262 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHET22
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
 | 
						|
*                          V, LDV, TAU, WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), U( LDU, * ),
 | 
						|
*      $                   V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      CHET22  generally checks a decomposition of the form
 | 
						|
*>
 | 
						|
*>              A U = U S
 | 
						|
*>
 | 
						|
*>      where A is complex Hermitian, the columns of U are orthonormal,
 | 
						|
*>      and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
 | 
						|
*>      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
 | 
						|
*>      otherwise the U is expressed as a product of Householder
 | 
						|
*>      transformations, whose vectors are stored in the array "V" and
 | 
						|
*>      whose scaling constants are in "TAU"; we shall use the letter
 | 
						|
*>      "V" to refer to the product of Householder transformations
 | 
						|
*>      (which should be equal to U).
 | 
						|
*>
 | 
						|
*>      Specifically, if ITYPE=1, then:
 | 
						|
*>
 | 
						|
*>              RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
 | 
						|
*>              RESULT(2) = | I - U**H U | / ( m ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \verbatim
 | 
						|
*>  ITYPE   INTEGER
 | 
						|
*>          Specifies the type of tests to be performed.
 | 
						|
*>          1: U expressed as a dense orthogonal matrix:
 | 
						|
*>             RESULT(1) = | A - U S U**H | / ( |A| n ulp )  and
 | 
						|
*>             RESULT(2) = | I - U U**H | / ( n ulp )
 | 
						|
*>
 | 
						|
*>  UPLO    CHARACTER
 | 
						|
*>          If UPLO='U', the upper triangle of A will be used and the
 | 
						|
*>          (strictly) lower triangle will not be referenced.  If
 | 
						|
*>          UPLO='L', the lower triangle of A will be used and the
 | 
						|
*>          (strictly) upper triangle will not be referenced.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  N       INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, CHET22 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  M       INTEGER
 | 
						|
*>          The number of columns of U.  If it is zero, CHET22 does
 | 
						|
*>          nothing.  It must be at least zero.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  KBAND   INTEGER
 | 
						|
*>          The bandwidth of the matrix.  It may only be zero or one.
 | 
						|
*>          If zero, then S is diagonal, and E is not referenced.  If
 | 
						|
*>          one, then S is symmetric tri-diagonal.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  A       COMPLEX array, dimension (LDA , N)
 | 
						|
*>          The original (unfactored) matrix.  It is assumed to be
 | 
						|
*>          symmetric, and only the upper (UPLO='U') or only the lower
 | 
						|
*>          (UPLO='L') will be referenced.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  LDA     INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  D       REAL array, dimension (N)
 | 
						|
*>          The diagonal of the (symmetric tri-) diagonal matrix.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  E       REAL array, dimension (N)
 | 
						|
*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
 | 
						|
*>          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
 | 
						|
*>          Not referenced if KBAND=0.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  U       COMPLEX array, dimension (LDU, N)
 | 
						|
*>          If ITYPE=1, this contains the orthogonal matrix in
 | 
						|
*>          the decomposition, expressed as a dense matrix.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  LDU     INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  V       COMPLEX array, dimension (LDV, N)
 | 
						|
*>          If ITYPE=2 or 3, the lower triangle of this array contains
 | 
						|
*>          the Householder vectors used to describe the orthogonal
 | 
						|
*>          matrix in the decomposition.  If ITYPE=1, then it is not
 | 
						|
*>          referenced.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  LDV     INTEGER
 | 
						|
*>          The leading dimension of V.  LDV must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  TAU     COMPLEX array, dimension (N)
 | 
						|
*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
 | 
						|
*>          v(j) v(j)**H in the Householder transformation H(j) of
 | 
						|
*>          the product  U = H(1)...H(n-2)
 | 
						|
*>          If ITYPE < 2, then TAU is not referenced.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  WORK    COMPLEX array, dimension (2*N**2)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  RWORK   REAL array, dimension (N)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  RESULT  REAL array, dimension (2)
 | 
						|
*>          The values computed by the two tests described above.  The
 | 
						|
*>          values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*>          RESULT(1) is always modified.  RESULT(2) is modified only
 | 
						|
*>          if LDU is at least N.
 | 
						|
*>          Modified.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
 | 
						|
     $                   V, LDV, TAU, WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), U( LDU, * ),
 | 
						|
     $                   V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
 | 
						|
     $                   CONE = ( 1.0E0, 0.0E0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
 | 
						|
      REAL               ANORM, ULP, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANHE, SLAMCH
 | 
						|
      EXTERNAL           CLANHE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CHEMM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 .OR. M.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ULP = SLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
*     Do Test 1
 | 
						|
*
 | 
						|
*     Norm of A:
 | 
						|
*
 | 
						|
      ANORM = MAX( CLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Compute error matrix:
 | 
						|
*
 | 
						|
*     ITYPE=1: error = U**H A U - S
 | 
						|
*
 | 
						|
      CALL CHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
 | 
						|
     $            N )
 | 
						|
      NN = N*N
 | 
						|
      NNP1 = NN + 1
 | 
						|
      CALL CGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
 | 
						|
     $            WORK( NNP1 ), N )
 | 
						|
      DO 10 J = 1, M
 | 
						|
         JJ = NN + ( J-1 )*N + J
 | 
						|
         WORK( JJ ) = WORK( JJ ) - D( J )
 | 
						|
   10 CONTINUE
 | 
						|
      IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
 | 
						|
         DO 20 J = 2, M
 | 
						|
            JJ1 = NN + ( J-1 )*N + J - 1
 | 
						|
            JJ2 = NN + ( J-2 )*N + J
 | 
						|
            WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
 | 
						|
            WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      WNORM = CLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.GT.WNORM ) THEN
 | 
						|
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Do Test 2
 | 
						|
*
 | 
						|
*     Compute  U**H U - I
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 )
 | 
						|
     $   CALL CUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
 | 
						|
     $                RESULT( 2 ) )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHET22
 | 
						|
*
 | 
						|
      END
 |