428 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHET21
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
 | 
						|
*                          LDV, TAU, WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), U( LDU, * ),
 | 
						|
*      $                   V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHET21 generally checks a decomposition of the form
 | 
						|
*>
 | 
						|
*>    A = U S U**H
 | 
						|
*>
 | 
						|
*> where **H means conjugate transpose, A is hermitian, U is unitary, and
 | 
						|
*> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if
 | 
						|
*> KBAND=1).
 | 
						|
*>
 | 
						|
*> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
 | 
						|
*> expressed as a product of Householder transformations, whose vectors
 | 
						|
*> are stored in the array "V" and whose scaling constants are in "TAU".
 | 
						|
*> We shall use the letter "V" to refer to the product of Householder
 | 
						|
*> transformations (which should be equal to U).
 | 
						|
*>
 | 
						|
*> Specifically, if ITYPE=1, then:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
 | 
						|
*>    RESULT(2) = | I - U U**H | / ( n ulp )
 | 
						|
*>
 | 
						|
*> If ITYPE=2, then:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | A - V S V**H | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*> If ITYPE=3, then:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | I - U V**H | / ( n ulp )
 | 
						|
*>
 | 
						|
*> For ITYPE > 1, the transformation U is expressed as a product
 | 
						|
*> V = H(1)...H(n-2),  where H(j) = I  -  tau(j) v(j) v(j)**H and each
 | 
						|
*> vector v(j) has its first j elements 0 and the remaining n-j elements
 | 
						|
*> stored in V(j+1:n,j).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the type of tests to be performed.
 | 
						|
*>          1: U expressed as a dense unitary matrix:
 | 
						|
*>             RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
 | 
						|
*>             RESULT(2) = | I - U U**H | / ( n ulp )
 | 
						|
*>
 | 
						|
*>          2: U expressed as a product V of Housholder transformations:
 | 
						|
*>             RESULT(1) = | A - V S V**H | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*>          3: U expressed both as a dense unitary matrix and
 | 
						|
*>             as a product of Housholder transformations:
 | 
						|
*>             RESULT(1) = | I - U V**H | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          If UPLO='U', the upper triangle of A and V will be used and
 | 
						|
*>          the (strictly) lower triangle will not be referenced.
 | 
						|
*>          If UPLO='L', the lower triangle of A and V will be used and
 | 
						|
*>          the (strictly) upper triangle will not be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, CHET21 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KBAND
 | 
						|
*> \verbatim
 | 
						|
*>          KBAND is INTEGER
 | 
						|
*>          The bandwidth of the matrix.  It may only be zero or one.
 | 
						|
*>          If zero, then S is diagonal, and E is not referenced.  If
 | 
						|
*>          one, then S is symmetric tri-diagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          The original (unfactored) matrix.  It is assumed to be
 | 
						|
*>          hermitian, and only the upper (UPLO='U') or only the lower
 | 
						|
*>          (UPLO='L') will be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The diagonal of the (symmetric tri-) diagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
 | 
						|
*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
 | 
						|
*>          (3,2) element, etc.
 | 
						|
*>          Not referenced if KBAND=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX array, dimension (LDU, N)
 | 
						|
*>          If ITYPE=1 or 3, this contains the unitary matrix in
 | 
						|
*>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
 | 
						|
*>          then it is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (LDV, N)
 | 
						|
*>          If ITYPE=2 or 3, the columns of this array contain the
 | 
						|
*>          Householder vectors used to describe the unitary matrix
 | 
						|
*>          in the decomposition.  If UPLO='L', then the vectors are in
 | 
						|
*>          the lower triangle, if UPLO='U', then in the upper
 | 
						|
*>          triangle.
 | 
						|
*>          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
 | 
						|
*>          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
 | 
						|
*>          is set to one, and later reset to its original value, during
 | 
						|
*>          the course of the calculation.
 | 
						|
*>          If ITYPE=1, then it is neither referenced nor modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of V.  LDV must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (N)
 | 
						|
*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
 | 
						|
*>          v(j) v(j)**H in the Householder transformation H(j) of
 | 
						|
*>          the product  U = H(1)...H(n-2)
 | 
						|
*>          If ITYPE < 2, then TAU is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          The values computed by the two tests described above.  The
 | 
						|
*>          values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*>          RESULT(1) is always modified.  RESULT(2) is modified only
 | 
						|
*>          if ITYPE=1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
 | 
						|
     $                   LDV, TAU, WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), U( LDU, * ),
 | 
						|
     $                   V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TEN
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER
 | 
						|
      CHARACTER          CUPLO
 | 
						|
      INTEGER            IINFO, J, JCOL, JR, JROW
 | 
						|
      REAL               ANORM, ULP, UNFL, WNORM
 | 
						|
      COMPLEX            VSAVE
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               CLANGE, CLANHE, SLAMCH
 | 
						|
      EXTERNAL           LSAME, CLANGE, CLANHE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CHER, CHER2, CLACPY, CLARFY, CLASET,
 | 
						|
     $                   CUNM2L, CUNM2R
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      IF( ITYPE.EQ.1 )
 | 
						|
     $   RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         LOWER = .FALSE.
 | 
						|
         CUPLO = 'U'
 | 
						|
      ELSE
 | 
						|
         LOWER = .TRUE.
 | 
						|
         CUPLO = 'L'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | 
						|
*
 | 
						|
*     Some Error Checks
 | 
						|
*
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         RESULT( 1 ) = TEN / ULP
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Do Test 1
 | 
						|
*
 | 
						|
*     Norm of A:
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.3 ) THEN
 | 
						|
         ANORM = ONE
 | 
						|
      ELSE
 | 
						|
         ANORM = MAX( CLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute error matrix:
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        ITYPE=1: error = A - U S U**H
 | 
						|
*
 | 
						|
         CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
 | 
						|
         CALL CLACPY( CUPLO, N, N, A, LDA, WORK, N )
 | 
						|
*
 | 
						|
         DO 10 J = 1, N
 | 
						|
            CALL CHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
         IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
 | 
						|
            DO 20 J = 1, N - 1
 | 
						|
               CALL CHER2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
 | 
						|
     $                     U( 1, J+1 ), 1, WORK, N )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
         WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*        ITYPE=2: error = V S V**H - A
 | 
						|
*
 | 
						|
         CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
 | 
						|
*
 | 
						|
         IF( LOWER ) THEN
 | 
						|
            WORK( N**2 ) = D( N )
 | 
						|
            DO 40 J = N - 1, 1, -1
 | 
						|
               IF( KBAND.EQ.1 ) THEN
 | 
						|
                  WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J )
 | 
						|
                  DO 30 JR = J + 2, N
 | 
						|
                     WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
 | 
						|
   30             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               VSAVE = V( J+1, J )
 | 
						|
               V( J+1, J ) = ONE
 | 
						|
               CALL CLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
 | 
						|
     $                      WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
 | 
						|
               V( J+1, J ) = VSAVE
 | 
						|
               WORK( ( N+1 )*( J-1 )+1 ) = D( J )
 | 
						|
   40       CONTINUE
 | 
						|
         ELSE
 | 
						|
            WORK( 1 ) = D( 1 )
 | 
						|
            DO 60 J = 1, N - 1
 | 
						|
               IF( KBAND.EQ.1 ) THEN
 | 
						|
                  WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J )
 | 
						|
                  DO 50 JR = 1, J - 1
 | 
						|
                     WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
 | 
						|
   50             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               VSAVE = V( J, J+1 )
 | 
						|
               V( J, J+1 ) = ONE
 | 
						|
               CALL CLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
 | 
						|
     $                      WORK( N**2+1 ) )
 | 
						|
               V( J, J+1 ) = VSAVE
 | 
						|
               WORK( ( N+1 )*J+1 ) = D( J+1 )
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 90 JCOL = 1, N
 | 
						|
            IF( LOWER ) THEN
 | 
						|
               DO 70 JROW = JCOL, N
 | 
						|
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
 | 
						|
     $                - A( JROW, JCOL )
 | 
						|
   70          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 80 JROW = 1, JCOL
 | 
						|
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
 | 
						|
     $                - A( JROW, JCOL )
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
   90    CONTINUE
 | 
						|
         WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*        ITYPE=3: error = U V**H - I
 | 
						|
*
 | 
						|
         IF( N.LT.2 )
 | 
						|
     $      RETURN
 | 
						|
         CALL CLACPY( ' ', N, N, U, LDU, WORK, N )
 | 
						|
         IF( LOWER ) THEN
 | 
						|
            CALL CUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
 | 
						|
     $                   WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
 | 
						|
         ELSE
 | 
						|
            CALL CUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
 | 
						|
     $                   WORK, N, WORK( N**2+1 ), IINFO )
 | 
						|
         END IF
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            RESULT( 1 ) = TEN / ULP
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 100 J = 1, N
 | 
						|
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
 | 
						|
  100    CONTINUE
 | 
						|
*
 | 
						|
         WNORM = CLANGE( '1', N, N, WORK, N, RWORK )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ANORM.GT.WNORM ) THEN
 | 
						|
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Do Test 2
 | 
						|
*
 | 
						|
*     Compute  U U**H - I
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
         CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
 | 
						|
     $               WORK, N )
 | 
						|
*
 | 
						|
         DO 110 J = 1, N
 | 
						|
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
 | 
						|
  110    CONTINUE
 | 
						|
*
 | 
						|
         RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
 | 
						|
     $                 REAL( N ) ) / ( N*ULP )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHET21
 | 
						|
*
 | 
						|
      END
 |