290 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHBT21
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
 | 
						|
*                          RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            KA, KS, LDA, LDU, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), U( LDU, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHBT21  generally checks a decomposition of the form
 | 
						|
*>
 | 
						|
*>         A = U S U**H
 | 
						|
*>
 | 
						|
*> where **H means conjugate transpose, A is hermitian banded, U is
 | 
						|
*> unitary, and S is diagonal (if KS=0) or symmetric
 | 
						|
*> tridiagonal (if KS=1).
 | 
						|
*>
 | 
						|
*> Specifically:
 | 
						|
*>
 | 
						|
*>         RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
 | 
						|
*>         RESULT(2) = | I - U U**H | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          If UPLO='U', the upper triangle of A and V will be used and
 | 
						|
*>          the (strictly) lower triangle will not be referenced.
 | 
						|
*>          If UPLO='L', the lower triangle of A and V will be used and
 | 
						|
*>          the (strictly) upper triangle will not be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, CHBT21 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KA
 | 
						|
*> \verbatim
 | 
						|
*>          KA is INTEGER
 | 
						|
*>          The bandwidth of the matrix A.  It must be at least zero.  If
 | 
						|
*>          it is larger than N-1, then max( 0, N-1 ) will be used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KS
 | 
						|
*> \verbatim
 | 
						|
*>          KS is INTEGER
 | 
						|
*>          The bandwidth of the matrix S.  It may only be zero or one.
 | 
						|
*>          If zero, then S is diagonal, and E is not referenced.  If
 | 
						|
*>          one, then S is symmetric tri-diagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          The original (unfactored) matrix.  It is assumed to be
 | 
						|
*>          hermitian, and only the upper (UPLO='U') or only the lower
 | 
						|
*>          (UPLO='L') will be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least min( KA, N-1 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The diagonal of the (symmetric tri-) diagonal matrix S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
 | 
						|
*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
 | 
						|
*>          (3,2) element, etc.
 | 
						|
*>          Not referenced if KS=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX array, dimension (LDU, N)
 | 
						|
*>          The unitary matrix in the decomposition, expressed as a
 | 
						|
*>          dense matrix (i.e., not as a product of Householder
 | 
						|
*>          transformations, Givens transformations, etc.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          The values computed by the two tests described above.  The
 | 
						|
*>          values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
 | 
						|
     $                   RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            KA, KS, LDA, LDU, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), U( LDU, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER
 | 
						|
      CHARACTER          CUPLO
 | 
						|
      INTEGER            IKA, J, JC, JR
 | 
						|
      REAL               ANORM, ULP, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               CLANGE, CLANHB, CLANHP, SLAMCH
 | 
						|
      EXTERNAL           LSAME, CLANGE, CLANHB, CLANHP, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CHPR, CHPR2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Constants
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IKA = MAX( 0, MIN( N-1, KA ) )
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         LOWER = .FALSE.
 | 
						|
         CUPLO = 'U'
 | 
						|
      ELSE
 | 
						|
         LOWER = .TRUE.
 | 
						|
         CUPLO = 'L'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | 
						|
*
 | 
						|
*     Some Error Checks
 | 
						|
*
 | 
						|
*     Do Test 1
 | 
						|
*
 | 
						|
*     Norm of A:
 | 
						|
*
 | 
						|
      ANORM = MAX( CLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Compute error matrix:    Error = A - U S U**H
 | 
						|
*
 | 
						|
*     Copy A from SB to SP storage format.
 | 
						|
*
 | 
						|
      J = 0
 | 
						|
      DO 50 JC = 1, N
 | 
						|
         IF( LOWER ) THEN
 | 
						|
            DO 10 JR = 1, MIN( IKA+1, N+1-JC )
 | 
						|
               J = J + 1
 | 
						|
               WORK( J ) = A( JR, JC )
 | 
						|
   10       CONTINUE
 | 
						|
            DO 20 JR = IKA + 2, N + 1 - JC
 | 
						|
               J = J + 1
 | 
						|
               WORK( J ) = ZERO
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 30 JR = IKA + 2, JC
 | 
						|
               J = J + 1
 | 
						|
               WORK( J ) = ZERO
 | 
						|
   30       CONTINUE
 | 
						|
            DO 40 JR = MIN( IKA, JC-1 ), 0, -1
 | 
						|
               J = J + 1
 | 
						|
               WORK( J ) = A( IKA+1-JR, JC )
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      DO 60 J = 1, N
 | 
						|
         CALL CHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
      IF( N.GT.1 .AND. KS.EQ.1 ) THEN
 | 
						|
         DO 70 J = 1, N - 1
 | 
						|
            CALL CHPR2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
 | 
						|
     $                  U( 1, J+1 ), 1, WORK )
 | 
						|
   70    CONTINUE
 | 
						|
      END IF
 | 
						|
      WNORM = CLANHP( '1', CUPLO, N, WORK, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.GT.WNORM ) THEN
 | 
						|
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Do Test 2
 | 
						|
*
 | 
						|
*     Compute  U U**H - I
 | 
						|
*
 | 
						|
      CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
 | 
						|
     $            N )
 | 
						|
*
 | 
						|
      DO 80 J = 1, N
 | 
						|
         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
      RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
 | 
						|
     $              REAL( N ) ) / ( N*ULP )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHBT21
 | 
						|
*
 | 
						|
      END
 |