270 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLARFGP + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfgp.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfgp.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfgp.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INCX, N
 | 
						|
*       COMPLEX*16         ALPHA, TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLARFGP generates a complex elementary reflector H of order n, such
 | 
						|
*> that
 | 
						|
*>
 | 
						|
*>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
 | 
						|
*>              (   x   )   (   0  )
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, beta is real and non-negative, and
 | 
						|
*> x is an (n-1)-element complex vector.  H is represented in the form
 | 
						|
*>
 | 
						|
*>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
 | 
						|
*>                     ( v )
 | 
						|
*>
 | 
						|
*> where tau is a complex scalar and v is a complex (n-1)-element
 | 
						|
*> vector. Note that H is not hermitian.
 | 
						|
*>
 | 
						|
*> If the elements of x are all zero and alpha is real, then tau = 0
 | 
						|
*> and H is taken to be the unit matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the elementary reflector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16
 | 
						|
*>          On entry, the value alpha.
 | 
						|
*>          On exit, it is overwritten with the value beta.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension
 | 
						|
*>                         (1+(N-2)*abs(INCX))
 | 
						|
*>          On entry, the vector x.
 | 
						|
*>          On exit, it is overwritten with the vector v.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>          The increment between elements of X. INCX > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16
 | 
						|
*>          The value tau.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCX, N
 | 
						|
      COMPLEX*16         ALPHA, TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   TWO, ONE, ZERO
 | 
						|
      PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, KNT
 | 
						|
      DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
 | 
						|
      COMPLEX*16         SAVEALPHA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
 | 
						|
      COMPLEX*16         ZLADIV
 | 
						|
      EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZDSCAL, ZSCAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         TAU = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      XNORM = DZNRM2( N-1, X, INCX )
 | 
						|
      ALPHR = DBLE( ALPHA )
 | 
						|
      ALPHI = DIMAG( ALPHA )
 | 
						|
*
 | 
						|
      IF( XNORM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
 | 
						|
*
 | 
						|
         IF( ALPHI.EQ.ZERO ) THEN
 | 
						|
            IF( ALPHR.GE.ZERO ) THEN
 | 
						|
*              When TAU.eq.ZERO, the vector is special-cased to be
 | 
						|
*              all zeros in the application routines.  We do not need
 | 
						|
*              to clear it.
 | 
						|
               TAU = ZERO
 | 
						|
            ELSE
 | 
						|
*              However, the application routines rely on explicit
 | 
						|
*              zero checks when TAU.ne.ZERO, and we must clear X.
 | 
						|
               TAU = TWO
 | 
						|
               DO J = 1, N-1
 | 
						|
                  X( 1 + (J-1)*INCX ) = ZERO
 | 
						|
               END DO
 | 
						|
               ALPHA = -ALPHA
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*           Only "reflecting" the diagonal entry to be real and non-negative.
 | 
						|
            XNORM = DLAPY2( ALPHR, ALPHI )
 | 
						|
            TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
 | 
						|
            DO J = 1, N-1
 | 
						|
               X( 1 + (J-1)*INCX ) = ZERO
 | 
						|
            END DO
 | 
						|
            ALPHA = XNORM
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        general case
 | 
						|
*
 | 
						|
         BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | 
						|
         SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
 | 
						|
         BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
         KNT = 0
 | 
						|
         IF( ABS( BETA ).LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*           XNORM, BETA may be inaccurate; scale X and recompute them
 | 
						|
*
 | 
						|
   10       CONTINUE
 | 
						|
            KNT = KNT + 1
 | 
						|
            CALL ZDSCAL( N-1, BIGNUM, X, INCX )
 | 
						|
            BETA = BETA*BIGNUM
 | 
						|
            ALPHI = ALPHI*BIGNUM
 | 
						|
            ALPHR = ALPHR*BIGNUM
 | 
						|
            IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
 | 
						|
     $         GO TO 10
 | 
						|
*
 | 
						|
*           New BETA is at most 1, at least SMLNUM
 | 
						|
*
 | 
						|
            XNORM = DZNRM2( N-1, X, INCX )
 | 
						|
            ALPHA = DCMPLX( ALPHR, ALPHI )
 | 
						|
            BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | 
						|
         END IF
 | 
						|
         SAVEALPHA = ALPHA
 | 
						|
         ALPHA = ALPHA + BETA
 | 
						|
         IF( BETA.LT.ZERO ) THEN
 | 
						|
            BETA = -BETA
 | 
						|
            TAU = -ALPHA / BETA
 | 
						|
         ELSE
 | 
						|
            ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
 | 
						|
            ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
 | 
						|
            TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
 | 
						|
            ALPHA = DCMPLX( -ALPHR, ALPHI )
 | 
						|
         END IF
 | 
						|
         ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
 | 
						|
*
 | 
						|
         IF ( ABS(TAU).LE.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*           In the case where the computed TAU ends up being a denormalized number,
 | 
						|
*           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
 | 
						|
*           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
 | 
						|
*
 | 
						|
*           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
 | 
						|
*           (Thanks Pat. Thanks MathWorks.)
 | 
						|
*
 | 
						|
            ALPHR = DBLE( SAVEALPHA )
 | 
						|
            ALPHI = DIMAG( SAVEALPHA )
 | 
						|
            IF( ALPHI.EQ.ZERO ) THEN
 | 
						|
               IF( ALPHR.GE.ZERO ) THEN
 | 
						|
                  TAU = ZERO
 | 
						|
               ELSE
 | 
						|
                  TAU = TWO
 | 
						|
                  DO J = 1, N-1
 | 
						|
                     X( 1 + (J-1)*INCX ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  BETA = DBLE( -SAVEALPHA )
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               XNORM = DLAPY2( ALPHR, ALPHI )
 | 
						|
               TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
 | 
						|
               DO J = 1, N-1
 | 
						|
                  X( 1 + (J-1)*INCX ) = ZERO
 | 
						|
               END DO
 | 
						|
               BETA = XNORM
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           This is the general case.
 | 
						|
*
 | 
						|
            CALL ZSCAL( N-1, ALPHA, X, INCX )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        If BETA is subnormal, it may lose relative accuracy
 | 
						|
*
 | 
						|
         DO 20 J = 1, KNT
 | 
						|
            BETA = BETA*SMLNUM
 | 
						|
 20      CONTINUE
 | 
						|
         ALPHA = BETA
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLARFGP
 | 
						|
*
 | 
						|
      END
 |