321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLA_SYRPVGRW + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION SLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
 | 
						|
*                                   WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER*1        UPLO
 | 
						|
*       INTEGER            N, INFO, LDA, LDAF
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>
 | 
						|
*> SLA_SYRPVGRW computes the reciprocal pivot growth factor
 | 
						|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | 
						|
*> much less than 1, the stability of the LU factorization of the
 | 
						|
*> (equilibrated) matrix A could be poor. This also means that the
 | 
						|
*> solution X, estimated condition numbers, and error bounds could be
 | 
						|
*> unreliable.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>       = 'U':  Upper triangle of A is stored;
 | 
						|
*>       = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>     The value of INFO returned from SSYTRF, .i.e., the pivot in
 | 
						|
*>     column INFO is exactly 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDAF,N)
 | 
						|
*>     The block diagonal matrix D and the multipliers used to
 | 
						|
*>     obtain the factor U or L as computed by SSYTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>     Details of the interchanges and the block structure of D
 | 
						|
*>     as determined by SSYTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realSYcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION SLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
 | 
						|
     $                            WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER*1        UPLO
 | 
						|
      INTEGER            N, INFO, LDA, LDAF
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * ), AF( LDAF, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            NCOLS, I, J, K, KP
 | 
						|
      REAL               AMAX, UMAX, RPVGRW, TMP
 | 
						|
      LOGICAL            UPPER
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      EXTERNAL           LSAME
 | 
						|
      LOGICAL            LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      UPPER = LSAME( 'Upper', UPLO )
 | 
						|
      IF ( INFO.EQ.0 ) THEN
 | 
						|
         IF ( UPPER ) THEN
 | 
						|
            NCOLS = 1
 | 
						|
         ELSE
 | 
						|
            NCOLS = N
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         NCOLS = INFO
 | 
						|
      END IF
 | 
						|
 | 
						|
      RPVGRW = 1.0
 | 
						|
      DO I = 1, 2*N
 | 
						|
         WORK( I ) = 0.0
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     Find the max magnitude entry of each column of A.  Compute the max
 | 
						|
*     for all N columns so we can apply the pivot permutation while
 | 
						|
*     looping below.  Assume a full factorization is the common case.
 | 
						|
*
 | 
						|
      IF ( UPPER ) THEN
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, J
 | 
						|
               WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
 | 
						|
               WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = J, N
 | 
						|
               WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
 | 
						|
               WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Now find the max magnitude entry of each column of U or L.  Also
 | 
						|
*     permute the magnitudes of A above so they're in the same order as
 | 
						|
*     the factor.
 | 
						|
*
 | 
						|
*     The iteration orders and permutations were copied from ssytrs.
 | 
						|
*     Calls to SSWAP would be severe overkill.
 | 
						|
*
 | 
						|
      IF ( UPPER ) THEN
 | 
						|
         K = N
 | 
						|
         DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
 | 
						|
            IF ( IPIV( K ).GT.0 ) THEN
 | 
						|
!              1x1 pivot
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF ( KP .NE. K ) THEN
 | 
						|
                  TMP = WORK( N+K )
 | 
						|
                  WORK( N+K ) = WORK( N+KP )
 | 
						|
                  WORK( N+KP ) = TMP
 | 
						|
               END IF
 | 
						|
               DO I = 1, K
 | 
						|
                  WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | 
						|
               END DO
 | 
						|
               K = K - 1
 | 
						|
            ELSE
 | 
						|
!              2x2 pivot
 | 
						|
               KP = -IPIV( K )
 | 
						|
               TMP = WORK( N+K-1 )
 | 
						|
               WORK( N+K-1 ) = WORK( N+KP )
 | 
						|
               WORK( N+KP ) = TMP
 | 
						|
               DO I = 1, K-1
 | 
						|
                  WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | 
						|
                  WORK( K-1 ) = MAX( ABS( AF( I, K-1 ) ), WORK( K-1 ) )
 | 
						|
               END DO
 | 
						|
               WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
 | 
						|
               K = K - 2
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
         K = NCOLS
 | 
						|
         DO WHILE ( K .LE. N )
 | 
						|
            IF ( IPIV( K ).GT.0 ) THEN
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF ( KP .NE. K ) THEN
 | 
						|
                  TMP = WORK( N+K )
 | 
						|
                  WORK( N+K ) = WORK( N+KP )
 | 
						|
                  WORK( N+KP ) = TMP
 | 
						|
               END IF
 | 
						|
               K = K + 1
 | 
						|
            ELSE
 | 
						|
               KP = -IPIV( K )
 | 
						|
               TMP = WORK( N+K )
 | 
						|
               WORK( N+K ) = WORK( N+KP )
 | 
						|
               WORK( N+KP ) = TMP
 | 
						|
               K = K + 2
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         K = 1
 | 
						|
         DO WHILE ( K .LE. NCOLS )
 | 
						|
            IF ( IPIV( K ).GT.0 ) THEN
 | 
						|
!              1x1 pivot
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF ( KP .NE. K ) THEN
 | 
						|
                  TMP = WORK( N+K )
 | 
						|
                  WORK( N+K ) = WORK( N+KP )
 | 
						|
                  WORK( N+KP ) = TMP
 | 
						|
               END IF
 | 
						|
               DO I = K, N
 | 
						|
                  WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | 
						|
               END DO
 | 
						|
               K = K + 1
 | 
						|
            ELSE
 | 
						|
!              2x2 pivot
 | 
						|
               KP = -IPIV( K )
 | 
						|
               TMP = WORK( N+K+1 )
 | 
						|
               WORK( N+K+1 ) = WORK( N+KP )
 | 
						|
               WORK( N+KP ) = TMP
 | 
						|
               DO I = K+1, N
 | 
						|
                  WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | 
						|
                  WORK( K+1 ) = MAX( ABS( AF(I, K+1 ) ), WORK( K+1 ) )
 | 
						|
               END DO
 | 
						|
               WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
 | 
						|
               K = K + 2
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
         K = NCOLS
 | 
						|
         DO WHILE ( K .GE. 1 )
 | 
						|
            IF ( IPIV( K ).GT.0 ) THEN
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF ( KP .NE. K ) THEN
 | 
						|
                  TMP = WORK( N+K )
 | 
						|
                  WORK( N+K ) = WORK( N+KP )
 | 
						|
                  WORK( N+KP ) = TMP
 | 
						|
               END IF
 | 
						|
               K = K - 1
 | 
						|
            ELSE
 | 
						|
               KP = -IPIV( K )
 | 
						|
               TMP = WORK( N+K )
 | 
						|
               WORK( N+K ) = WORK( N+KP )
 | 
						|
               WORK( N+KP ) = TMP
 | 
						|
               K = K - 2
 | 
						|
            ENDIF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the *inverse* of the max element growth factor.  Dividing
 | 
						|
*     by zero would imply the largest entry of the factor's column is
 | 
						|
*     zero.  Than can happen when either the column of A is zero or
 | 
						|
*     massive pivots made the factor underflow to zero.  Neither counts
 | 
						|
*     as growth in itself, so simply ignore terms with zero
 | 
						|
*     denominators.
 | 
						|
*
 | 
						|
      IF ( UPPER ) THEN
 | 
						|
         DO I = NCOLS, N
 | 
						|
            UMAX = WORK( I )
 | 
						|
            AMAX = WORK( N+I )
 | 
						|
            IF ( UMAX /= 0.0 ) THEN
 | 
						|
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, NCOLS
 | 
						|
            UMAX = WORK( I )
 | 
						|
            AMAX = WORK( N+I )
 | 
						|
            IF ( UMAX /= 0.0 ) THEN
 | 
						|
               RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
 | 
						|
      SLA_SYRPVGRW = RPVGRW
 | 
						|
*
 | 
						|
*     End of SLA_SYRPVGRW
 | 
						|
*
 | 
						|
      END
 |