1193 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1193 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static doublereal c_b27 = 1.;
 | 
						|
static doublereal c_b38 = 0.;
 | 
						|
 | 
						|
/* > \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | 
						|
rices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DGEGV + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegv.f
 | 
						|
"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegv.f
 | 
						|
"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegv.f
 | 
						|
"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
 | 
						|
/*                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBVL, JOBVR */
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
 | 
						|
/*       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | 
						|
/*      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ), */
 | 
						|
/*      $                   VR( LDVR, * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > This routine is deprecated and has been replaced by routine DGGEV. */
 | 
						|
/* > */
 | 
						|
/* > DGEGV computes the eigenvalues and, optionally, the left and/or right */
 | 
						|
/* > eigenvectors of a real matrix pair (A,B). */
 | 
						|
/* > Given two square matrices A and B, */
 | 
						|
/* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
 | 
						|
/* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
 | 
						|
/* > that */
 | 
						|
/* > */
 | 
						|
/* >    A*x = lambda*B*x. */
 | 
						|
/* > */
 | 
						|
/* > An alternate form is to find the eigenvalues mu and corresponding */
 | 
						|
/* > eigenvectors y such that */
 | 
						|
/* > */
 | 
						|
/* >    mu*A*y = B*y. */
 | 
						|
/* > */
 | 
						|
/* > These two forms are equivalent with mu = 1/lambda and x = y if */
 | 
						|
/* > neither lambda nor mu is zero.  In order to deal with the case that */
 | 
						|
/* > lambda or mu is zero or small, two values alpha and beta are returned */
 | 
						|
/* > for each eigenvalue, such that lambda = alpha/beta and */
 | 
						|
/* > mu = beta/alpha. */
 | 
						|
/* > */
 | 
						|
/* > The vectors x and y in the above equations are right eigenvectors of */
 | 
						|
/* > the matrix pair (A,B).  Vectors u and v satisfying */
 | 
						|
/* > */
 | 
						|
/* >    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B */
 | 
						|
/* > */
 | 
						|
/* > are left eigenvectors of (A,B). */
 | 
						|
/* > */
 | 
						|
/* > Note: this routine performs "full balancing" on A and B */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVL is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the left generalized eigenvectors; */
 | 
						|
/* >          = 'V':  compute the left generalized eigenvectors (returned */
 | 
						|
/* >                  in VL). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the right generalized eigenvectors; */
 | 
						|
/* >          = 'V':  compute the right generalized eigenvectors (returned */
 | 
						|
/* >                  in VR). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A, B, VL, and VR.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is DOUBLE PRECISION array, dimension (LDA, N) */
 | 
						|
/* >          On entry, the matrix A. */
 | 
						|
/* >          If JOBVL = 'V' or JOBVR = 'V', then on exit A */
 | 
						|
/* >          contains the real Schur form of A from the generalized Schur */
 | 
						|
/* >          factorization of the pair (A,B) after balancing. */
 | 
						|
/* >          If no eigenvectors were computed, then only the diagonal */
 | 
						|
/* >          blocks from the Schur form will be correct.  See DGGHRD and */
 | 
						|
/* >          DHGEQZ for details. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is DOUBLE PRECISION array, dimension (LDB, N) */
 | 
						|
/* >          On entry, the matrix B. */
 | 
						|
/* >          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
 | 
						|
/* >          upper triangular matrix obtained from B in the generalized */
 | 
						|
/* >          Schur factorization of the pair (A,B) after balancing. */
 | 
						|
/* >          If no eigenvectors were computed, then only those elements of */
 | 
						|
/* >          B corresponding to the diagonal blocks from the Schur form of */
 | 
						|
/* >          A will be correct.  See DGGHRD and DHGEQZ for details. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAR is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The real parts of each scalar alpha defining an eigenvalue of */
 | 
						|
/* >          GNEP. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAI is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The imaginary parts of each scalar alpha defining an */
 | 
						|
/* >          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th */
 | 
						|
/* >          eigenvalue is real; if positive, then the j-th and */
 | 
						|
/* >          (j+1)-st eigenvalues are a complex conjugate pair, with */
 | 
						|
/* >          ALPHAI(j+1) = -ALPHAI(j). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The scalars beta that define the eigenvalues of GNEP. */
 | 
						|
/* > */
 | 
						|
/* >          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 | 
						|
/* >          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 | 
						|
/* >          pair (A,B), in one of the forms lambda = alpha/beta or */
 | 
						|
/* >          mu = beta/alpha.  Since either lambda or mu may overflow, */
 | 
						|
/* >          they should not, in general, be computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is DOUBLE PRECISION array, dimension (LDVL,N) */
 | 
						|
/* >          If JOBVL = 'V', the left eigenvectors u(j) are stored */
 | 
						|
/* >          in the columns of VL, in the same order as their eigenvalues. */
 | 
						|
/* >          If the j-th eigenvalue is real, then u(j) = VL(:,j). */
 | 
						|
/* >          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 | 
						|
/* >          pair, then */
 | 
						|
/* >             u(j) = VL(:,j) + i*VL(:,j+1) */
 | 
						|
/* >          and */
 | 
						|
/* >            u(j+1) = VL(:,j) - i*VL(:,j+1). */
 | 
						|
/* > */
 | 
						|
/* >          Each eigenvector is scaled so that its largest component has */
 | 
						|
/* >          abs(real part) + abs(imag. part) = 1, except for eigenvectors */
 | 
						|
/* >          corresponding to an eigenvalue with alpha = beta = 0, which */
 | 
						|
/* >          are set to zero. */
 | 
						|
/* >          Not referenced if JOBVL = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VL. LDVL >= 1, and */
 | 
						|
/* >          if JOBVL = 'V', LDVL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is DOUBLE PRECISION array, dimension (LDVR,N) */
 | 
						|
/* >          If JOBVR = 'V', the right eigenvectors x(j) are stored */
 | 
						|
/* >          in the columns of VR, in the same order as their eigenvalues. */
 | 
						|
/* >          If the j-th eigenvalue is real, then x(j) = VR(:,j). */
 | 
						|
/* >          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 | 
						|
/* >          pair, then */
 | 
						|
/* >            x(j) = VR(:,j) + i*VR(:,j+1) */
 | 
						|
/* >          and */
 | 
						|
/* >            x(j+1) = VR(:,j) - i*VR(:,j+1). */
 | 
						|
/* > */
 | 
						|
/* >          Each eigenvector is scaled so that its largest component has */
 | 
						|
/* >          abs(real part) + abs(imag. part) = 1, except for eigenvalues */
 | 
						|
/* >          corresponding to an eigenvalue with alpha = beta = 0, which */
 | 
						|
/* >          are set to zero. */
 | 
						|
/* >          Not referenced if JOBVR = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VR. LDVR >= 1, and */
 | 
						|
/* >          if JOBVR = 'V', LDVR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,8*N). */
 | 
						|
/* >          For good performance, LWORK must generally be larger. */
 | 
						|
/* >          To compute the optimal value of LWORK, call ILAENV to get */
 | 
						|
/* >          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: */
 | 
						|
/* >          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
 | 
						|
/* >          The optimal LWORK is: */
 | 
						|
/* >              2*N + MAX( 6*N, N*(NB+1) ). */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          = 1,...,N: */
 | 
						|
/* >                The QZ iteration failed.  No eigenvectors have been */
 | 
						|
/* >                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 | 
						|
/* >                should be correct for j=INFO+1,...,N. */
 | 
						|
/* >          > N:  errors that usually indicate LAPACK problems: */
 | 
						|
/* >                =N+1: error return from DGGBAL */
 | 
						|
/* >                =N+2: error return from DGEQRF */
 | 
						|
/* >                =N+3: error return from DORMQR */
 | 
						|
/* >                =N+4: error return from DORGQR */
 | 
						|
/* >                =N+5: error return from DGGHRD */
 | 
						|
/* >                =N+6: error return from DHGEQZ (other than failed */
 | 
						|
/* >                                                iteration) */
 | 
						|
/* >                =N+7: error return from DTGEVC */
 | 
						|
/* >                =N+8: error return from DGGBAK (computing VL) */
 | 
						|
/* >                =N+9: error return from DGGBAK (computing VR) */
 | 
						|
/* >                =N+10: error return from DLASCL (various calls) */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup doubleGEeigen */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  Balancing */
 | 
						|
/* >  --------- */
 | 
						|
/* > */
 | 
						|
/* >  This driver calls DGGBAL to both permute and scale rows and columns */
 | 
						|
/* >  of A and B.  The permutations PL and PR are chosen so that PL*A*PR */
 | 
						|
/* >  and PL*B*R will be upper triangular except for the diagonal blocks */
 | 
						|
/* >  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
 | 
						|
/* >  possible.  The diagonal scaling matrices DL and DR are chosen so */
 | 
						|
/* >  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
 | 
						|
/* >  one (except for the elements that start out zero.) */
 | 
						|
/* > */
 | 
						|
/* >  After the eigenvalues and eigenvectors of the balanced matrices */
 | 
						|
/* >  have been computed, DGGBAK transforms the eigenvectors back to what */
 | 
						|
/* >  they would have been (in perfect arithmetic) if they had not been */
 | 
						|
/* >  balanced. */
 | 
						|
/* > */
 | 
						|
/* >  Contents of A and B on Exit */
 | 
						|
/* >  -------- -- - --- - -- ---- */
 | 
						|
/* > */
 | 
						|
/* >  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
 | 
						|
/* >  both), then on exit the arrays A and B will contain the real Schur */
 | 
						|
/* >  form[*] of the "balanced" versions of A and B.  If no eigenvectors */
 | 
						|
/* >  are computed, then only the diagonal blocks will be correct. */
 | 
						|
/* > */
 | 
						|
/* >  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
 | 
						|
/* >      by Golub & van Loan, pub. by Johns Hopkins U. Press. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
 | 
						|
	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
 | 
						|
	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
 | 
						|
	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
 | 
						|
	integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 | 
						|
	    vr_offset, i__1, i__2;
 | 
						|
    doublereal d__1, d__2, d__3, d__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal absb, anrm, bnrm;
 | 
						|
    integer itau;
 | 
						|
    doublereal temp;
 | 
						|
    logical ilvl, ilvr;
 | 
						|
    integer lopt;
 | 
						|
    doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer ileft, iinfo, icols, iwork, irows, jc;
 | 
						|
    extern /* Subroutine */ void dggbak_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer nb;
 | 
						|
    extern /* Subroutine */ void dggbal_(char *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, integer *);
 | 
						|
    integer in;
 | 
						|
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *);
 | 
						|
    integer jr;
 | 
						|
    doublereal salfai;
 | 
						|
    extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal 
 | 
						|
	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *);
 | 
						|
    doublereal salfar;
 | 
						|
    extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *, integer *), 
 | 
						|
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *);
 | 
						|
    doublereal safmin;
 | 
						|
    extern /* Subroutine */ void dlaset_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, integer *);
 | 
						|
    doublereal safmax;
 | 
						|
    char chtemp[1];
 | 
						|
    logical ldumma[1];
 | 
						|
    extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
 | 
						|
	     integer *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *), dtgevc_(char *, char *, 
 | 
						|
	    logical *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *, integer *, doublereal *, integer *); 
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    integer ijobvl, iright;
 | 
						|
    logical ilimit;
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    integer ijobvr;
 | 
						|
    extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    integer *);
 | 
						|
    doublereal onepls;
 | 
						|
    integer lwkmin, nb1, nb2, nb3;
 | 
						|
    extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *, integer *);
 | 
						|
    integer lwkopt;
 | 
						|
    logical lquery;
 | 
						|
    integer ihi, ilo;
 | 
						|
    doublereal eps;
 | 
						|
    logical ilv;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --alphar;
 | 
						|
    --alphai;
 | 
						|
    --beta;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(jobvl, "N")) {
 | 
						|
	ijobvl = 1;
 | 
						|
	ilvl = FALSE_;
 | 
						|
    } else if (lsame_(jobvl, "V")) {
 | 
						|
	ijobvl = 2;
 | 
						|
	ilvl = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvl = -1;
 | 
						|
	ilvl = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(jobvr, "N")) {
 | 
						|
	ijobvr = 1;
 | 
						|
	ilvr = FALSE_;
 | 
						|
    } else if (lsame_(jobvr, "V")) {
 | 
						|
	ijobvr = 2;
 | 
						|
	ilvr = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvr = -1;
 | 
						|
	ilvr = FALSE_;
 | 
						|
    }
 | 
						|
    ilv = ilvl || ilvr;
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
    i__1 = *n << 3;
 | 
						|
    lwkmin = f2cmax(i__1,1);
 | 
						|
    lwkopt = lwkmin;
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    *info = 0;
 | 
						|
    if (ijobvl <= 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (ijobvr <= 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 | 
						|
	*info = -12;
 | 
						|
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 | 
						|
	*info = -14;
 | 
						|
    } else if (*lwork < lwkmin && ! lquery) {
 | 
						|
	*info = -16;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
	nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
	nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = f2cmax(nb1,nb2);
 | 
						|
	nb = f2cmax(i__1,nb3);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = *n * 6, i__2 = *n * (nb + 1);
 | 
						|
	lopt = (*n << 1) + f2cmax(i__1,i__2);
 | 
						|
	work[1] = (doublereal) lopt;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DGEGV ", &i__1, 6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = dlamch_("E") * dlamch_("B");
 | 
						|
    safmin = dlamch_("S");
 | 
						|
    safmin += safmin;
 | 
						|
    safmax = 1. / safmin;
 | 
						|
    onepls = eps * 4 + 1.;
 | 
						|
 | 
						|
/*     Scale A */
 | 
						|
 | 
						|
    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 | 
						|
    anrm1 = anrm;
 | 
						|
    anrm2 = 1.;
 | 
						|
    if (anrm < 1.) {
 | 
						|
	if (safmax * anrm < 1.) {
 | 
						|
	    anrm1 = safmin;
 | 
						|
	    anrm2 = safmax * anrm;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (anrm > 0.) {
 | 
						|
	dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 10;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale B */
 | 
						|
 | 
						|
    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | 
						|
    bnrm1 = bnrm;
 | 
						|
    bnrm2 = 1.;
 | 
						|
    if (bnrm < 1.) {
 | 
						|
	if (safmax * bnrm < 1.) {
 | 
						|
	    bnrm1 = safmin;
 | 
						|
	    bnrm2 = safmax * bnrm;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (bnrm > 0.) {
 | 
						|
	dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 10;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Permute the matrix to make it more nearly triangular */
 | 
						|
/*     Workspace layout:  (8*N words -- "work" requires 6*N words) */
 | 
						|
/*        left_permutation, right_permutation, work... */
 | 
						|
 | 
						|
    ileft = 1;
 | 
						|
    iright = *n + 1;
 | 
						|
    iwork = iright + *n;
 | 
						|
    dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 | 
						|
	    ileft], &work[iright], &work[iwork], &iinfo);
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 1;
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce B to triangular form, and initialize VL and/or VR */
 | 
						|
/*     Workspace layout:  ("work..." must have at least N words) */
 | 
						|
/*        left_permutation, right_permutation, tau, work... */
 | 
						|
 | 
						|
    irows = ihi + 1 - ilo;
 | 
						|
    if (ilv) {
 | 
						|
	icols = *n + 1 - ilo;
 | 
						|
    } else {
 | 
						|
	icols = irows;
 | 
						|
    }
 | 
						|
    itau = iwork;
 | 
						|
    iwork = itau + irows;
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | 
						|
	    iwork], &i__1, &iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 2;
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | 
						|
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
 | 
						|
	    iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 3;
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilvl) {
 | 
						|
	dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
 | 
						|
		;
 | 
						|
	i__1 = irows - 1;
 | 
						|
	i__2 = irows - 1;
 | 
						|
	dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 
 | 
						|
		1 + ilo * vl_dim1], ldvl);
 | 
						|
	i__1 = *lwork + 1 - iwork;
 | 
						|
	dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
 | 
						|
		itau], &work[iwork], &i__1, &iinfo);
 | 
						|
	if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | 
						|
	    lwkopt = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 4;
 | 
						|
	    goto L120;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilvr) {
 | 
						|
	dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
 | 
						|
		;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce to generalized Hessenberg form */
 | 
						|
 | 
						|
    if (ilv) {
 | 
						|
 | 
						|
/*        Eigenvectors requested -- work on whole matrix. */
 | 
						|
 | 
						|
	dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | 
						|
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
 | 
						|
    } else {
 | 
						|
	dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
 | 
						|
		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 | 
						|
		vr_offset], ldvr, &iinfo);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 5;
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Perform QZ algorithm */
 | 
						|
/*     Workspace layout:  ("work..." must have at least 1 word) */
 | 
						|
/*        left_permutation, right_permutation, work... */
 | 
						|
 | 
						|
    iwork = itau;
 | 
						|
    if (ilv) {
 | 
						|
	*(unsigned char *)chtemp = 'S';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)chtemp = 'E';
 | 
						|
    }
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | 
						|
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
 | 
						|
	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	if (iinfo > 0 && iinfo <= *n) {
 | 
						|
	    *info = iinfo;
 | 
						|
	} else if (iinfo > *n && iinfo <= *n << 1) {
 | 
						|
	    *info = iinfo - *n;
 | 
						|
	} else {
 | 
						|
	    *info = *n + 6;
 | 
						|
	}
 | 
						|
	goto L120;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilv) {
 | 
						|
 | 
						|
/*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace) */
 | 
						|
 | 
						|
	if (ilvl) {
 | 
						|
	    if (ilvr) {
 | 
						|
		*(unsigned char *)chtemp = 'B';
 | 
						|
	    } else {
 | 
						|
		*(unsigned char *)chtemp = 'L';
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    *(unsigned char *)chtemp = 'R';
 | 
						|
	}
 | 
						|
 | 
						|
	dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
 | 
						|
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
 | 
						|
		iwork], &iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 7;
 | 
						|
	    goto L120;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Undo balancing on VL and VR, rescale */
 | 
						|
 | 
						|
	if (ilvl) {
 | 
						|
	    dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 | 
						|
		    vl[vl_offset], ldvl, &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = *n + 8;
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (jc = 1; jc <= i__1; ++jc) {
 | 
						|
		if (alphai[jc] < 0.) {
 | 
						|
		    goto L50;
 | 
						|
		}
 | 
						|
		temp = 0.;
 | 
						|
		if (alphai[jc] == 0.) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 
 | 
						|
				abs(d__1));
 | 
						|
			temp = f2cmax(d__2,d__3);
 | 
						|
/* L10: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 
 | 
						|
				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 
 | 
						|
				vl_dim1], abs(d__2));
 | 
						|
			temp = f2cmax(d__3,d__4);
 | 
						|
/* L20: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		if (temp < safmin) {
 | 
						|
		    goto L50;
 | 
						|
		}
 | 
						|
		temp = 1. / temp;
 | 
						|
		if (alphai[jc] == 0.) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
			vl[jr + jc * vl_dim1] *= temp;
 | 
						|
/* L30: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
			vl[jr + jc * vl_dim1] *= temp;
 | 
						|
			vl[jr + (jc + 1) * vl_dim1] *= temp;
 | 
						|
/* L40: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
L50:
 | 
						|
		;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (ilvr) {
 | 
						|
	    dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 | 
						|
		    vr[vr_offset], ldvr, &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = *n + 9;
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (jc = 1; jc <= i__1; ++jc) {
 | 
						|
		if (alphai[jc] < 0.) {
 | 
						|
		    goto L100;
 | 
						|
		}
 | 
						|
		temp = 0.;
 | 
						|
		if (alphai[jc] == 0.) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 
 | 
						|
				abs(d__1));
 | 
						|
			temp = f2cmax(d__2,d__3);
 | 
						|
/* L60: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 
 | 
						|
				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 
 | 
						|
				vr_dim1], abs(d__2));
 | 
						|
			temp = f2cmax(d__3,d__4);
 | 
						|
/* L70: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		if (temp < safmin) {
 | 
						|
		    goto L100;
 | 
						|
		}
 | 
						|
		temp = 1. / temp;
 | 
						|
		if (alphai[jc] == 0.) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
			vr[jr + jc * vr_dim1] *= temp;
 | 
						|
/* L80: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
			vr[jr + jc * vr_dim1] *= temp;
 | 
						|
			vr[jr + (jc + 1) * vr_dim1] *= temp;
 | 
						|
/* L90: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
L100:
 | 
						|
		;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        End of eigenvector calculation */
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling in alpha, beta */
 | 
						|
 | 
						|
/*     Note: this does not give the alpha and beta for the unscaled */
 | 
						|
/*     problem. */
 | 
						|
 | 
						|
/*     Un-scaling is limited to avoid underflow in alpha and beta */
 | 
						|
/*     if they are significant. */
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (jc = 1; jc <= i__1; ++jc) {
 | 
						|
	absar = (d__1 = alphar[jc], abs(d__1));
 | 
						|
	absai = (d__1 = alphai[jc], abs(d__1));
 | 
						|
	absb = (d__1 = beta[jc], abs(d__1));
 | 
						|
	salfar = anrm * alphar[jc];
 | 
						|
	salfai = anrm * alphai[jc];
 | 
						|
	sbeta = bnrm * beta[jc];
 | 
						|
	ilimit = FALSE_;
 | 
						|
	scale = 1.;
 | 
						|
 | 
						|
/*        Check for significant underflow in ALPHAI */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = safmin, d__2 = eps * absar, d__1 = f2cmax(d__1,d__2), d__2 = eps *
 | 
						|
		 absb;
 | 
						|
	if (abs(salfai) < safmin && absai >= f2cmax(d__1,d__2)) {
 | 
						|
	    ilimit = TRUE_;
 | 
						|
/* Computing MAX */
 | 
						|
	    d__1 = onepls * safmin, d__2 = anrm2 * absai;
 | 
						|
	    scale = onepls * safmin / anrm1 / f2cmax(d__1,d__2);
 | 
						|
 | 
						|
	} else if (salfai == 0.) {
 | 
						|
 | 
						|
/*           If insignificant underflow in ALPHAI, then make the */
 | 
						|
/*           conjugate eigenvalue real. */
 | 
						|
 | 
						|
	    if (alphai[jc] < 0. && jc > 1) {
 | 
						|
		alphai[jc - 1] = 0.;
 | 
						|
	    } else if (alphai[jc] > 0. && jc < *n) {
 | 
						|
		alphai[jc + 1] = 0.;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Check for significant underflow in ALPHAR */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = safmin, d__2 = eps * absai, d__1 = f2cmax(d__1,d__2), d__2 = eps *
 | 
						|
		 absb;
 | 
						|
	if (abs(salfar) < safmin && absar >= f2cmax(d__1,d__2)) {
 | 
						|
	    ilimit = TRUE_;
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	    d__3 = onepls * safmin, d__4 = anrm2 * absar;
 | 
						|
	    d__1 = scale, d__2 = onepls * safmin / anrm1 / f2cmax(d__3,d__4);
 | 
						|
	    scale = f2cmax(d__1,d__2);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Check for significant underflow in BETA */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = safmin, d__2 = eps * absar, d__1 = f2cmax(d__1,d__2), d__2 = eps *
 | 
						|
		 absai;
 | 
						|
	if (abs(sbeta) < safmin && absb >= f2cmax(d__1,d__2)) {
 | 
						|
	    ilimit = TRUE_;
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	    d__3 = onepls * safmin, d__4 = bnrm2 * absb;
 | 
						|
	    d__1 = scale, d__2 = onepls * safmin / bnrm1 / f2cmax(d__3,d__4);
 | 
						|
	    scale = f2cmax(d__1,d__2);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Check for possible overflow when limiting scaling */
 | 
						|
 | 
						|
	if (ilimit) {
 | 
						|
/* Computing MAX */
 | 
						|
	    d__1 = abs(salfar), d__2 = abs(salfai), d__1 = f2cmax(d__1,d__2), 
 | 
						|
		    d__2 = abs(sbeta);
 | 
						|
	    temp = scale * safmin * f2cmax(d__1,d__2);
 | 
						|
	    if (temp > 1.) {
 | 
						|
		scale /= temp;
 | 
						|
	    }
 | 
						|
	    if (scale < 1.) {
 | 
						|
		ilimit = FALSE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
 | 
						|
 | 
						|
	if (ilimit) {
 | 
						|
	    salfar = scale * alphar[jc] * anrm;
 | 
						|
	    salfai = scale * alphai[jc] * anrm;
 | 
						|
	    sbeta = scale * beta[jc] * bnrm;
 | 
						|
	}
 | 
						|
	alphar[jc] = salfar;
 | 
						|
	alphai[jc] = salfai;
 | 
						|
	beta[jc] = sbeta;
 | 
						|
/* L110: */
 | 
						|
    }
 | 
						|
 | 
						|
L120:
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of DGEGV */
 | 
						|
 | 
						|
} /* dgegv_ */
 | 
						|
 |