262 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPTT05
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
 | |
| *                          FERR, BERR, RESLTS )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDB, LDX, LDXACT, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), E( * ),
 | |
| *      $                   FERR( * ), RESLTS( * ), X( LDX, * ),
 | |
| *      $                   XACT( LDXACT, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPTT05 tests the error bounds from iterative refinement for the
 | |
| *> computed solution to a system of equations A*X = B, where A is a
 | |
| *> symmetric tridiagonal matrix of order n.
 | |
| *>
 | |
| *> RESLTS(1) = test of the error bound
 | |
| *>           = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>
 | |
| *> A large value is returned if this ratio is not less than one.
 | |
| *>
 | |
| *> RESLTS(2) = residual from the iterative refinement routine
 | |
| *>           = the maximum of BERR / ( NZ*EPS + (*) ), where
 | |
| *>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *>             and NZ = max. number of nonzeros in any row of A, plus 1
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices X, B, and XACT, and the
 | |
| *>          order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns of the matrices X, B, and XACT.
 | |
| *>          NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The right hand side vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The exact solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix XACT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDXACT
 | |
| *> \verbatim
 | |
| *>          LDXACT is INTEGER
 | |
| *>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The estimated forward error bounds for each solution vector
 | |
| *>          X.  If XTRUE is the true solution, FERR bounds the magnitude
 | |
| *>          of the largest entry in (X - XTRUE) divided by the magnitude
 | |
| *>          of the largest entry in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector (i.e., the smallest relative change in any entry of A
 | |
| *>          or B that makes X an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESLTS
 | |
| *> \verbatim
 | |
| *>          RESLTS is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The maximum over the NRHS solution vectors of the ratios:
 | |
| *>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
 | |
|      $                   FERR, BERR, RESLTS )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDB, LDX, LDXACT, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), E( * ),
 | |
|      $                   FERR( * ), RESLTS( * ), X( LDX, * ),
 | |
|      $                   XACT( LDXACT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IMAX, J, K, NZ
 | |
|       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           IDAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0 or NRHS = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESLTS( 1 ) = ZERO
 | |
|          RESLTS( 2 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       NZ = 4
 | |
| *
 | |
| *     Test 1:  Compute the maximum of
 | |
| *        norm(X - XACT) / ( norm(X) * FERR )
 | |
| *     over all the vectors X and XACT using the infinity-norm.
 | |
| *
 | |
|       ERRBND = ZERO
 | |
|       DO 30 J = 1, NRHS
 | |
|          IMAX = IDAMAX( N, X( 1, J ), 1 )
 | |
|          XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
 | |
|          DIFF = ZERO
 | |
|          DO 10 I = 1, N
 | |
|             DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
|          IF( XNORM.GT.ONE ) THEN
 | |
|             GO TO 20
 | |
|          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
 | |
|             GO TO 20
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *
 | |
|    20    CONTINUE
 | |
|          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
 | |
|             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       RESLTS( 1 ) = ERRBND
 | |
| *
 | |
| *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
 | |
| *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *
 | |
|       DO 50 K = 1, NRHS
 | |
|          IF( N.EQ.1 ) THEN
 | |
|             AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
 | |
|          ELSE
 | |
|             AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
 | |
|      $             ABS( E( 1 )*X( 2, K ) )
 | |
|             DO 40 I = 2, N - 1
 | |
|                TMP = ABS( B( I, K ) ) + ABS( E( I-1 )*X( I-1, K ) ) +
 | |
|      $               ABS( D( I )*X( I, K ) ) + ABS( E( I )*X( I+1, K ) )
 | |
|                AXBI = MIN( AXBI, TMP )
 | |
|    40       CONTINUE
 | |
|             TMP = ABS( B( N, K ) ) + ABS( E( N-1 )*X( N-1, K ) ) +
 | |
|      $            ABS( D( N )*X( N, K ) )
 | |
|             AXBI = MIN( AXBI, TMP )
 | |
|          END IF
 | |
|          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
 | |
|          IF( K.EQ.1 ) THEN
 | |
|             RESLTS( 2 ) = TMP
 | |
|          ELSE
 | |
|             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
 | |
|          END IF
 | |
|    50 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPTT05
 | |
| *
 | |
|       END
 |