682 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSYEVR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | |
| *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
 | |
| *                          IWORK, LIWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE, UPLO
 | |
| *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
 | |
| *       REAL               ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
| *       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSYEVR computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
 | |
| *> selected by specifying either a range of values or a range of
 | |
| *> indices for the desired eigenvalues.
 | |
| *>
 | |
| *> SSYEVR first reduces the matrix A to tridiagonal form T with a call
 | |
| *> to SSYTRD.  Then, whenever possible, SSYEVR calls SSTEMR to compute
 | |
| *> the eigenspectrum using Relatively Robust Representations.  SSTEMR
 | |
| *> computes eigenvalues by the dqds algorithm, while orthogonal
 | |
| *> eigenvectors are computed from various "good" L D L^T representations
 | |
| *> (also known as Relatively Robust Representations). Gram-Schmidt
 | |
| *> orthogonalization is avoided as far as possible. More specifically,
 | |
| *> the various steps of the algorithm are as follows.
 | |
| *>
 | |
| *> For each unreduced block (submatrix) of T,
 | |
| *>    (a) Compute T - sigma I  = L D L^T, so that L and D
 | |
| *>        define all the wanted eigenvalues to high relative accuracy.
 | |
| *>        This means that small relative changes in the entries of D and L
 | |
| *>        cause only small relative changes in the eigenvalues and
 | |
| *>        eigenvectors. The standard (unfactored) representation of the
 | |
| *>        tridiagonal matrix T does not have this property in general.
 | |
| *>    (b) Compute the eigenvalues to suitable accuracy.
 | |
| *>        If the eigenvectors are desired, the algorithm attains full
 | |
| *>        accuracy of the computed eigenvalues only right before
 | |
| *>        the corresponding vectors have to be computed, see steps c) and d).
 | |
| *>    (c) For each cluster of close eigenvalues, select a new
 | |
| *>        shift close to the cluster, find a new factorization, and refine
 | |
| *>        the shifted eigenvalues to suitable accuracy.
 | |
| *>    (d) For each eigenvalue with a large enough relative separation compute
 | |
| *>        the corresponding eigenvector by forming a rank revealing twisted
 | |
| *>        factorization. Go back to (c) for any clusters that remain.
 | |
| *>
 | |
| *> The desired accuracy of the output can be specified by the input
 | |
| *> parameter ABSTOL.
 | |
| *>
 | |
| *> For more details, see SSTEMR's documentation and:
 | |
| *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
 | |
| *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
 | |
| *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
 | |
| *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
 | |
| *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
 | |
| *>   2004.  Also LAPACK Working Note 154.
 | |
| *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
 | |
| *>   tridiagonal eigenvalue/eigenvector problem",
 | |
| *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
 | |
| *>   UC Berkeley, May 1997.
 | |
| *>
 | |
| *>
 | |
| *> Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
 | |
| *> on machines which conform to the ieee-754 floating point standard.
 | |
| *> SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
 | |
| *> when partial spectrum requests are made.
 | |
| *>
 | |
| *> Normal execution of SSTEMR may create NaNs and infinities and
 | |
| *> hence may abort due to a floating point exception in environments
 | |
| *> which do not handle NaNs and infinities in the ieee standard default
 | |
| *> manner.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
 | |
| *>          SSTEIN are called
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>          On exit, the lower triangle (if UPLO='L') or the upper
 | |
| *>          triangle (if UPLO='U') of A, including the diagonal, is
 | |
| *>          destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is REAL
 | |
| *>          If RANGE='V', the lower and upper bounds of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>          If RANGE='I', the indices (in ascending order) of the
 | |
| *>          smallest and largest eigenvalues to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is REAL
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing A to tridiagonal form.
 | |
| *>
 | |
| *>          See "Computing Small Singular Values of Bidiagonal Matrices
 | |
| *>          with Guaranteed High Relative Accuracy," by Demmel and
 | |
| *>          Kahan, LAPACK Working Note #3.
 | |
| *>
 | |
| *>          If high relative accuracy is important, set ABSTOL to
 | |
| *>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
 | |
| *>          eigenvalues are computed to high relative accuracy when
 | |
| *>          possible in future releases.  The current code does not
 | |
| *>          make any guarantees about high relative accuracy, but
 | |
| *>          future releases will. See J. Barlow and J. Demmel,
 | |
| *>          "Computing Accurate Eigensystems of Scaled Diagonally
 | |
| *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
 | |
| *>          of which matrices define their eigenvalues to high relative
 | |
| *>          accuracy.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          The first M elements contain the selected eigenvalues in
 | |
| *>          ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, max(1,M))
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *>          Supplying N columns is always safe.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISUPPZ
 | |
| *> \verbatim
 | |
| *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
 | |
| *>          The support of the eigenvectors in Z, i.e., the indices
 | |
| *>          indicating the nonzero elements in Z. The i-th eigenvector
 | |
| *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | |
| *>          ISUPPZ( 2*i ).
 | |
| *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,26*N).
 | |
| *>          For optimal efficiency, LWORK >= (NB+6)*N,
 | |
| *>          where NB is the max of the blocksize for SSYTRD and SORMTR
 | |
| *>          returned by ILAENV.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  Internal error
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realSYeigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Inderjit Dhillon, IBM Almaden, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *>     Ken Stanley, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Jason Riedy, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
 | |
|      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
 | |
|      $                   IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE, UPLO
 | |
|       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
 | |
|       REAL               ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
|       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
 | |
|      $                   WANTZ, TRYRAC
 | |
|       CHARACTER          ORDER
 | |
|       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
 | |
|      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
 | |
|      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
 | |
|      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
 | |
|       REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
 | |
|      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANSY
 | |
|       EXTERNAL           LSAME, ILAENV, SLAMCH, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SORMTR, SSCAL, SSTEBZ, SSTEMR, SSTEIN,
 | |
|      $                   SSTERF, SSWAP, SSYTRD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IEEEOK = ILAENV( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
 | |
| *
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
| *
 | |
|       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
 | |
| *
 | |
|       LWMIN = MAX( 1, 26*N )
 | |
|       LIWMIN = MAX( 1, 10*N )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL )
 | |
|      $         INFO = -8
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | |
|                INFO = -9
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -10
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|             INFO = -15
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
 | |
|          NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
 | |
|          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
 | |
|          WORK( 1 ) = LWKOPT
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -18
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -20
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSYEVR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          WORK( 1 ) = 26
 | |
|          IF( ALLEIG .OR. INDEIG ) THEN
 | |
|             M = 1
 | |
|             W( 1 ) = A( 1, 1 )
 | |
|          ELSE
 | |
|             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
 | |
|                M = 1
 | |
|                W( 1 ) = A( 1, 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTZ ) THEN
 | |
|             Z( 1, 1 ) = ONE
 | |
|             ISUPPZ( 1 ) = 1
 | |
|             ISUPPZ( 2 ) = 1
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ISCALE = 0
 | |
|       ABSTLL = ABSTOL
 | |
|       IF (VALEIG) THEN
 | |
|          VLL = VL
 | |
|          VUU = VU
 | |
|       END IF
 | |
|       ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( LOWER ) THEN
 | |
|             DO 10 J = 1, N
 | |
|                CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             DO 20 J = 1, N
 | |
|                CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|          IF( ABSTOL.GT.0 )
 | |
|      $      ABSTLL = ABSTOL*SIGMA
 | |
|          IF( VALEIG ) THEN
 | |
|             VLL = VL*SIGMA
 | |
|             VUU = VU*SIGMA
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
| *     Initialize indices into workspaces.  Note: The IWORK indices are
 | |
| *     used only if SSTERF or SSTEMR fail.
 | |
| 
 | |
| *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
 | |
| *     elementary reflectors used in SSYTRD.
 | |
|       INDTAU = 1
 | |
| *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
 | |
|       INDD = INDTAU + N
 | |
| *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
 | |
| *     tridiagonal matrix from SSYTRD.
 | |
|       INDE = INDD + N
 | |
| *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
 | |
| *     -written by SSTEMR (the SSTERF path copies the diagonal to W).
 | |
|       INDDD = INDE + N
 | |
| *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
 | |
| *     -written while computing the eigenvalues in SSTERF and SSTEMR.
 | |
|       INDEE = INDDD + N
 | |
| *     INDWK is the starting offset of the left-over workspace, and
 | |
| *     LLWORK is the remaining workspace size.
 | |
|       INDWK = INDEE + N
 | |
|       LLWORK = LWORK - INDWK + 1
 | |
| 
 | |
| *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
 | |
| *     stores the block indices of each of the M<=N eigenvalues.
 | |
|       INDIBL = 1
 | |
| *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
 | |
| *     stores the starting and finishing indices of each block.
 | |
|       INDISP = INDIBL + N
 | |
| *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
 | |
| *     that corresponding to eigenvectors that fail to converge in
 | |
| *     SSTEIN.  This information is discarded; if any fail, the driver
 | |
| *     returns INFO > 0.
 | |
|       INDIFL = INDISP + N
 | |
| *     INDIWO is the offset of the remaining integer workspace.
 | |
|       INDIWO = INDIFL + N
 | |
| 
 | |
| *
 | |
| *     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
 | |
| *
 | |
|       CALL SSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
 | |
|      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
 | |
| *
 | |
| *     If all eigenvalues are desired
 | |
| *     then call SSTERF or SSTEMR and SORMTR.
 | |
| *
 | |
|       TEST = .FALSE.
 | |
|       IF( INDEIG ) THEN
 | |
|          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | |
|             TEST = .TRUE.
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
|             CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
 | |
|             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
 | |
|             CALL SSTERF( N, W, WORK( INDEE ), INFO )
 | |
|          ELSE
 | |
|             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
 | |
|             CALL SCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
 | |
| *
 | |
|             IF (ABSTOL .LE. TWO*N*EPS) THEN
 | |
|                TRYRAC = .TRUE.
 | |
|             ELSE
 | |
|                TRYRAC = .FALSE.
 | |
|             END IF
 | |
|             CALL SSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
 | |
|      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
 | |
|      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *
 | |
| *
 | |
| *        Apply orthogonal matrix used in reduction to tridiagonal
 | |
| *        form to eigenvectors returned by SSTEIN.
 | |
| *
 | |
|             IF( WANTZ .AND. INFO.EQ.0 ) THEN
 | |
|                INDWKN = INDE
 | |
|                LLWRKN = LWORK - INDWKN + 1
 | |
|                CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA,
 | |
|      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
 | |
|      $                      LLWRKN, IINFO )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
| *           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are
 | |
| *           undefined.
 | |
|             M = N
 | |
|             GO TO 30
 | |
|          END IF
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
 | |
| *     Also call SSTEBZ and SSTEIN if SSTEMR fails.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          ORDER = 'B'
 | |
|       ELSE
 | |
|          ORDER = 'E'
 | |
|       END IF
 | |
| 
 | |
|       CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
 | |
|      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
 | |
|      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
 | |
|      $             IWORK( INDIWO ), INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
 | |
|      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
 | |
|      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
 | |
|      $                INFO )
 | |
| *
 | |
| *        Apply orthogonal matrix used in reduction to tridiagonal
 | |
| *        form to eigenvectors returned by SSTEIN.
 | |
| *
 | |
|          INDWKN = INDE
 | |
|          LLWRKN = LWORK - INDWKN + 1
 | |
|          CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
 | |
|      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
| *  Jump here if SSTEMR/SSTEIN succeeded.
 | |
|    30 CONTINUE
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = M
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     If eigenvalues are not in order, then sort them, along with
 | |
| *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
 | |
| *     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
 | |
| *     not return this detailed information to the user.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          DO 50 J = 1, M - 1
 | |
|             I = 0
 | |
|             TMP1 = W( J )
 | |
|             DO 40 JJ = J + 1, M
 | |
|                IF( W( JJ ).LT.TMP1 ) THEN
 | |
|                   I = JJ
 | |
|                   TMP1 = W( JJ )
 | |
|                END IF
 | |
|    40       CONTINUE
 | |
| *
 | |
|             IF( I.NE.0 ) THEN
 | |
|                W( I ) = W( J )
 | |
|                W( J ) = TMP1
 | |
|                CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Set WORK(1) to optimal workspace size.
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYEVR
 | |
| *
 | |
|       END
 |