426 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by sbdsqr.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASQ4 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq4.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq4.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq4.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
 | |
| *                          DN1, DN2, TAU, TTYPE, G )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            I0, N0, N0IN, PP, TTYPE
 | |
| *       REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               Z( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASQ4 computes an approximation TAU to the smallest eigenvalue
 | |
| *> using values of d from the previous transform.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] I0
 | |
| *> \verbatim
 | |
| *>          I0 is INTEGER
 | |
| *>        First index.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N0
 | |
| *> \verbatim
 | |
| *>          N0 is INTEGER
 | |
| *>        Last index.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension ( 4*N )
 | |
| *>        Z holds the qd array.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PP
 | |
| *> \verbatim
 | |
| *>          PP is INTEGER
 | |
| *>        PP=0 for ping, PP=1 for pong.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N0IN
 | |
| *> \verbatim
 | |
| *>          N0IN is INTEGER
 | |
| *>        The value of N0 at start of EIGTEST.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DMIN
 | |
| *> \verbatim
 | |
| *>          DMIN is REAL
 | |
| *>        Minimum value of d.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DMIN1
 | |
| *> \verbatim
 | |
| *>          DMIN1 is REAL
 | |
| *>        Minimum value of d, excluding D( N0 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DMIN2
 | |
| *> \verbatim
 | |
| *>          DMIN2 is REAL
 | |
| *>        Minimum value of d, excluding D( N0 ) and D( N0-1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DN
 | |
| *> \verbatim
 | |
| *>          DN is REAL
 | |
| *>        d(N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DN1
 | |
| *> \verbatim
 | |
| *>          DN1 is REAL
 | |
| *>        d(N-1)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DN2
 | |
| *> \verbatim
 | |
| *>          DN2 is REAL
 | |
| *>        d(N-2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL
 | |
| *>        This is the shift.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TTYPE
 | |
| *> \verbatim
 | |
| *>          TTYPE is INTEGER
 | |
| *>        Shift type.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] G
 | |
| *> \verbatim
 | |
| *>          G is REAL
 | |
| *>        G is passed as an argument in order to save its value between
 | |
| *>        calls to SLASQ4.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  CNST1 = 9/16
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
 | |
|      $                   DN1, DN2, TAU, TTYPE, G )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            I0, N0, N0IN, PP, TTYPE
 | |
|       REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               CNST1, CNST2, CNST3
 | |
|       PARAMETER          ( CNST1 = 0.5630E0, CNST2 = 1.010E0,
 | |
|      $                   CNST3 = 1.050E0 )
 | |
|       REAL               QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
 | |
|       PARAMETER          ( QURTR = 0.250E0, THIRD = 0.3330E0,
 | |
|      $                   HALF = 0.50E0, ZERO = 0.0E0, ONE = 1.0E0,
 | |
|      $                   TWO = 2.0E0, HUNDRD = 100.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I4, NN, NP
 | |
|       REAL               A2, B1, B2, GAM, GAP1, GAP2, S
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     A negative DMIN forces the shift to take that absolute value
 | |
| *     TTYPE records the type of shift.
 | |
| *
 | |
|       IF( DMIN.LE.ZERO ) THEN
 | |
|          TAU = -DMIN
 | |
|          TTYPE = -1
 | |
|          RETURN
 | |
|       END IF
 | |
| *       
 | |
|       NN = 4*N0 + PP
 | |
|       IF( N0IN.EQ.N0 ) THEN
 | |
| *
 | |
| *        No eigenvalues deflated.
 | |
| *
 | |
|          IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
 | |
| *
 | |
|             B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
 | |
|             B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
 | |
|             A2 = Z( NN-7 ) + Z( NN-5 )
 | |
| *
 | |
| *           Cases 2 and 3.
 | |
| *
 | |
|             IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
 | |
|                GAP2 = DMIN2 - A2 - DMIN2*QURTR
 | |
|                IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
 | |
|                   GAP1 = A2 - DN - ( B2 / GAP2 )*B2
 | |
|                ELSE
 | |
|                   GAP1 = A2 - DN - ( B1+B2 )
 | |
|                END IF
 | |
|                IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
 | |
|                   S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
 | |
|                   TTYPE = -2
 | |
|                ELSE
 | |
|                   S = ZERO
 | |
|                   IF( DN.GT.B1 )
 | |
|      $               S = DN - B1
 | |
|                   IF( A2.GT.( B1+B2 ) )
 | |
|      $               S = MIN( S, A2-( B1+B2 ) )
 | |
|                   S = MAX( S, THIRD*DMIN )
 | |
|                   TTYPE = -3
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Case 4.
 | |
| *
 | |
|                TTYPE = -4
 | |
|                S = QURTR*DMIN
 | |
|                IF( DMIN.EQ.DN ) THEN
 | |
|                   GAM = DN
 | |
|                   A2 = ZERO
 | |
|                   IF( Z( NN-5 ) .GT. Z( NN-7 ) )
 | |
|      $               RETURN
 | |
|                   B2 = Z( NN-5 ) / Z( NN-7 )
 | |
|                   NP = NN - 9
 | |
|                ELSE
 | |
|                   NP = NN - 2*PP
 | |
|                   B2 = Z( NP-2 )
 | |
|                   GAM = DN1
 | |
|                   IF( Z( NP-4 ) .GT. Z( NP-2 ) )
 | |
|      $               RETURN
 | |
|                   A2 = Z( NP-4 ) / Z( NP-2 )
 | |
|                   IF( Z( NN-9 ) .GT. Z( NN-11 ) )
 | |
|      $               RETURN
 | |
|                   B2 = Z( NN-9 ) / Z( NN-11 )
 | |
|                   NP = NN - 13
 | |
|                END IF
 | |
| *
 | |
| *              Approximate contribution to norm squared from I < NN-1.
 | |
| *
 | |
|                A2 = A2 + B2
 | |
|                DO 10 I4 = NP, 4*I0 - 1 + PP, -4
 | |
|                   IF( B2.EQ.ZERO )
 | |
|      $               GO TO 20
 | |
|                   B1 = B2
 | |
|                   IF( Z( I4 ) .GT. Z( I4-2 ) )
 | |
|      $               RETURN
 | |
|                   B2 = B2*( Z( I4 ) / Z( I4-2 ) )
 | |
|                   A2 = A2 + B2
 | |
|                   IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
 | |
|      $               GO TO 20
 | |
|    10          CONTINUE
 | |
|    20          CONTINUE
 | |
|                A2 = CNST3*A2
 | |
| *
 | |
| *              Rayleigh quotient residual bound.
 | |
| *
 | |
|                IF( A2.LT.CNST1 )
 | |
|      $            S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
 | |
|             END IF
 | |
|          ELSE IF( DMIN.EQ.DN2 ) THEN
 | |
| *
 | |
| *           Case 5.
 | |
| *
 | |
|             TTYPE = -5
 | |
|             S = QURTR*DMIN
 | |
| *
 | |
| *           Compute contribution to norm squared from I > NN-2.
 | |
| *
 | |
|             NP = NN - 2*PP
 | |
|             B1 = Z( NP-2 )
 | |
|             B2 = Z( NP-6 )
 | |
|             GAM = DN2
 | |
|             IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
 | |
|      $         RETURN
 | |
|             A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
 | |
| *
 | |
| *           Approximate contribution to norm squared from I < NN-2.
 | |
| *
 | |
|             IF( N0-I0.GT.2 ) THEN
 | |
|                B2 = Z( NN-13 ) / Z( NN-15 )
 | |
|                A2 = A2 + B2
 | |
|                DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
 | |
|                   IF( B2.EQ.ZERO )
 | |
|      $               GO TO 40
 | |
|                   B1 = B2
 | |
|                   IF( Z( I4 ) .GT. Z( I4-2 ) )
 | |
|      $               RETURN
 | |
|                   B2 = B2*( Z( I4 ) / Z( I4-2 ) )
 | |
|                   A2 = A2 + B2
 | |
|                   IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
 | |
|      $               GO TO 40
 | |
|    30          CONTINUE
 | |
|    40          CONTINUE
 | |
|                A2 = CNST3*A2
 | |
|             END IF
 | |
| *
 | |
|             IF( A2.LT.CNST1 )
 | |
|      $         S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
 | |
|          ELSE
 | |
| *
 | |
| *           Case 6, no information to guide us.
 | |
| *
 | |
|             IF( TTYPE.EQ.-6 ) THEN
 | |
|                G = G + THIRD*( ONE-G )
 | |
|             ELSE IF( TTYPE.EQ.-18 ) THEN
 | |
|                G = QURTR*THIRD
 | |
|             ELSE
 | |
|                G = QURTR
 | |
|             END IF
 | |
|             S = G*DMIN
 | |
|             TTYPE = -6
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
 | |
| *
 | |
| *        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
 | |
| *
 | |
|          IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN 
 | |
| *
 | |
| *           Cases 7 and 8.
 | |
| *
 | |
|             TTYPE = -7
 | |
|             S = THIRD*DMIN1
 | |
|             IF( Z( NN-5 ).GT.Z( NN-7 ) )
 | |
|      $         RETURN
 | |
|             B1 = Z( NN-5 ) / Z( NN-7 )
 | |
|             B2 = B1
 | |
|             IF( B2.EQ.ZERO )
 | |
|      $         GO TO 60
 | |
|             DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
 | |
|                A2 = B1
 | |
|                IF( Z( I4 ).GT.Z( I4-2 ) )
 | |
|      $            RETURN
 | |
|                B1 = B1*( Z( I4 ) / Z( I4-2 ) )
 | |
|                B2 = B2 + B1
 | |
|                IF( HUNDRD*MAX( B1, A2 ).LT.B2 ) 
 | |
|      $            GO TO 60
 | |
|    50       CONTINUE
 | |
|    60       CONTINUE
 | |
|             B2 = SQRT( CNST3*B2 )
 | |
|             A2 = DMIN1 / ( ONE+B2**2 )
 | |
|             GAP2 = HALF*DMIN2 - A2
 | |
|             IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
 | |
|                S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
 | |
|             ELSE 
 | |
|                S = MAX( S, A2*( ONE-CNST2*B2 ) )
 | |
|                TTYPE = -8
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Case 9.
 | |
| *
 | |
|             S = QURTR*DMIN1
 | |
|             IF( DMIN1.EQ.DN1 )
 | |
|      $         S = HALF*DMIN1
 | |
|             TTYPE = -9
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
 | |
| *
 | |
| *        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
 | |
| *
 | |
| *        Cases 10 and 11.
 | |
| *
 | |
|          IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN 
 | |
|             TTYPE = -10
 | |
|             S = THIRD*DMIN2
 | |
|             IF( Z( NN-5 ).GT.Z( NN-7 ) )
 | |
|      $         RETURN
 | |
|             B1 = Z( NN-5 ) / Z( NN-7 )
 | |
|             B2 = B1
 | |
|             IF( B2.EQ.ZERO )
 | |
|      $         GO TO 80
 | |
|             DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
 | |
|                IF( Z( I4 ).GT.Z( I4-2 ) )
 | |
|      $            RETURN
 | |
|                B1 = B1*( Z( I4 ) / Z( I4-2 ) )
 | |
|                B2 = B2 + B1
 | |
|                IF( HUNDRD*B1.LT.B2 )
 | |
|      $            GO TO 80
 | |
|    70       CONTINUE
 | |
|    80       CONTINUE
 | |
|             B2 = SQRT( CNST3*B2 )
 | |
|             A2 = DMIN2 / ( ONE+B2**2 )
 | |
|             GAP2 = Z( NN-7 ) + Z( NN-9 ) -
 | |
|      $             SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
 | |
|             IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
 | |
|                S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
 | |
|             ELSE 
 | |
|                S = MAX( S, A2*( ONE-CNST2*B2 ) )
 | |
|             END IF
 | |
|          ELSE
 | |
|             S = QURTR*DMIN2
 | |
|             TTYPE = -11
 | |
|          END IF
 | |
|       ELSE IF( N0IN.GT.( N0+2 ) ) THEN
 | |
| *
 | |
| *        Case 12, more than two eigenvalues deflated. No information.
 | |
| *
 | |
|          S = ZERO 
 | |
|          TTYPE = -12
 | |
|       END IF
 | |
| *
 | |
|       TAU = S
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASQ4
 | |
| *
 | |
|       END
 |