349 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSYEQUB
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZSYEQUB + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyequb.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyequb.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyequb.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       DOUBLE PRECISION   AMAX, SCOND
 | |
| *       CHARACTER          UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
| *       DOUBLE PRECISION   S( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSYEQUB computes row and column scalings intended to equilibrate a
 | |
| *> symmetric matrix A and reduce its condition number
 | |
| *> (with respect to the two-norm).  S contains the scale factors,
 | |
| *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 | |
| *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 | |
| *> choice of S puts the condition number of B within a factor N of the
 | |
| *> smallest possible condition number over all possible diagonal
 | |
| *> scalings.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The N-by-N symmetric matrix whose scaling
 | |
| *>          factors are to be computed.  Only the diagonal elements of A
 | |
| *>          are referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0, S contains the scale factors for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCOND
 | |
| *> \verbatim
 | |
| *>          SCOND is DOUBLE PRECISION
 | |
| *>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | |
| *>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | |
| *>          large nor too small, it is not worth scaling by S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AMAX
 | |
| *> \verbatim
 | |
| *>          AMAX is DOUBLE PRECISION
 | |
| *>          Absolute value of largest matrix element.  If AMAX is very
 | |
| *>          close to overflow or very close to underflow, the matrix
 | |
| *>          should be scaled.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16SYcomputational
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
 | |
| *>  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
 | |
| *>  DOI 10.1023/B:NUMA.0000016606.32820.69 \n 
 | |
| *>  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, N
 | |
|       DOUBLE PRECISION   AMAX, SCOND
 | |
|       CHARACTER          UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
|       DOUBLE PRECISION   S( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
 | |
|       INTEGER            MAX_ITER
 | |
|       PARAMETER          ( MAX_ITER = 100 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, ITER
 | |
|       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
 | |
|      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
 | |
|       LOGICAL            UP
 | |
|       COMPLEX*16         ZDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           DLAMCH, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     Statement Function Definitions
 | |
|       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|         INFO = -1
 | |
|       ELSE IF ( N .LT. 0 ) THEN
 | |
|         INFO = -2
 | |
|       ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
 | |
|         INFO = -4
 | |
|       END IF
 | |
|       IF ( INFO .NE. 0 ) THEN
 | |
|         CALL XERBLA( 'ZSYEQUB', -INFO )
 | |
|         RETURN
 | |
|       END IF
 | |
| 
 | |
|       UP = LSAME( UPLO, 'U' )
 | |
|       AMAX = ZERO
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ( N .EQ. 0 ) THEN
 | |
|         SCOND = ONE
 | |
|         RETURN
 | |
|       END IF
 | |
| 
 | |
|       DO I = 1, N
 | |
|         S( I ) = ZERO
 | |
|       END DO
 | |
| 
 | |
|       AMAX = ZERO
 | |
|       IF ( UP ) THEN
 | |
|          DO J = 1, N
 | |
|             DO I = 1, J-1
 | |
|                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
 | |
|                S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
 | |
|                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
 | |
|             END DO
 | |
|             S( J ) = MAX( S( J ), CABS1( A( J, J) ) )
 | |
|             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO J = 1, N
 | |
|             S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
 | |
|             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
 | |
|             DO I = J+1, N
 | |
|                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
 | |
|                S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) )
 | |
|                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       END IF
 | |
|       DO J = 1, N
 | |
|          S( J ) = 1.0D+0 / S( J )
 | |
|       END DO
 | |
| 
 | |
|       TOL = ONE / SQRT( 2.0D0 * N )
 | |
| 
 | |
|       DO ITER = 1, MAX_ITER
 | |
|          SCALE = 0.0D+0
 | |
|          SUMSQ = 0.0D+0
 | |
| *       beta = |A|s
 | |
|         DO I = 1, N
 | |
|            WORK( I ) = ZERO
 | |
|         END DO
 | |
|         IF ( UP ) THEN
 | |
|            DO J = 1, N
 | |
|               DO I = 1, J-1
 | |
|                  T = CABS1( A( I, J ) )
 | |
|                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
 | |
|                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
 | |
|               END DO
 | |
|               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
 | |
|            END DO
 | |
|         ELSE
 | |
|            DO J = 1, N
 | |
|               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
 | |
|               DO I = J+1, N
 | |
|                  T = CABS1( A( I, J ) )
 | |
|                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
 | |
|                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
 | |
|               END DO
 | |
|            END DO
 | |
|         END IF
 | |
| 
 | |
| *       avg = s^T beta / n
 | |
|         AVG = 0.0D+0
 | |
|         DO I = 1, N
 | |
|           AVG = AVG + S( I )*WORK( I )
 | |
|         END DO
 | |
|         AVG = AVG / N
 | |
| 
 | |
|         STD = 0.0D+0
 | |
|         DO I = N+1, 2*N
 | |
|            WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
 | |
|         END DO
 | |
|         CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
 | |
|         STD = SCALE * SQRT( SUMSQ / N )
 | |
| 
 | |
|         IF ( STD .LT. TOL * AVG ) GOTO 999
 | |
| 
 | |
|         DO I = 1, N
 | |
|           T = CABS1( A( I, I ) )
 | |
|           SI = S( I )
 | |
|           C2 = ( N-1 ) * T
 | |
|           C1 = ( N-2 ) * ( WORK( I ) - T*SI )
 | |
|           C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
 | |
|           D = C1*C1 - 4*C0*C2
 | |
| 
 | |
|           IF ( D .LE. 0 ) THEN
 | |
|             INFO = -1
 | |
|             RETURN
 | |
|           END IF
 | |
|           SI = -2*C0 / ( C1 + SQRT( D ) )
 | |
| 
 | |
|           D = SI - S( I )
 | |
|           U = ZERO
 | |
|           IF ( UP ) THEN
 | |
|             DO J = 1, I
 | |
|               T = CABS1( A( J, I ) )
 | |
|               U = U + S( J )*T
 | |
|               WORK( J ) = WORK( J ) + D*T
 | |
|             END DO
 | |
|             DO J = I+1,N
 | |
|               T = CABS1( A( I, J ) )
 | |
|               U = U + S( J )*T
 | |
|               WORK( J ) = WORK( J ) + D*T
 | |
|             END DO
 | |
|           ELSE
 | |
|             DO J = 1, I
 | |
|               T = CABS1( A( I, J ) )
 | |
|               U = U + S( J )*T
 | |
|               WORK( J ) = WORK( J ) + D*T
 | |
|             END DO
 | |
|             DO J = I+1,N
 | |
|               T = CABS1( A( J, I ) )
 | |
|               U = U + S( J )*T
 | |
|               WORK( J ) = WORK( J ) + D*T
 | |
|             END DO
 | |
|           END IF
 | |
|           AVG = AVG + ( U + WORK( I ) ) * D / N
 | |
|           S( I ) = SI
 | |
|         END DO
 | |
|       END DO
 | |
| 
 | |
|  999  CONTINUE
 | |
| 
 | |
|       SMLNUM = DLAMCH( 'SAFEMIN' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       SMIN = BIGNUM
 | |
|       SMAX = ZERO
 | |
|       T = ONE / SQRT( AVG )
 | |
|       BASE = DLAMCH( 'B' )
 | |
|       U = ONE / LOG( BASE )
 | |
|       DO I = 1, N
 | |
|         S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
 | |
|         SMIN = MIN( SMIN, S( I ) )
 | |
|         SMAX = MAX( SMAX, S( I ) )
 | |
|       END DO
 | |
|       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
 | |
| *
 | |
|       END
 |