184 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAS2 computes singular values of a 2-by-2 triangular matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAS2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slas2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slas2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slas2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL               F, G, H, SSMAX, SSMIN
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAS2  computes the singular values of the 2-by-2 matrix
 | |
| *>    [  F   G  ]
 | |
| *>    [  0   H  ].
 | |
| *> On return, SSMIN is the smaller singular value and SSMAX is the
 | |
| *> larger singular value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] F
 | |
| *> \verbatim
 | |
| *>          F is REAL
 | |
| *>          The (1,1) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] G
 | |
| *> \verbatim
 | |
| *>          G is REAL
 | |
| *>          The (1,2) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] H
 | |
| *> \verbatim
 | |
| *>          H is REAL
 | |
| *>          The (2,2) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SSMIN
 | |
| *> \verbatim
 | |
| *>          SSMIN is REAL
 | |
| *>          The smaller singular value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SSMAX
 | |
| *> \verbatim
 | |
| *>          SSMAX is REAL
 | |
| *>          The larger singular value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Barring over/underflow, all output quantities are correct to within
 | |
| *>  a few units in the last place (ulps), even in the absence of a guard
 | |
| *>  digit in addition/subtraction.
 | |
| *>
 | |
| *>  In IEEE arithmetic, the code works correctly if one matrix element is
 | |
| *>  infinite.
 | |
| *>
 | |
| *>  Overflow will not occur unless the largest singular value itself
 | |
| *>  overflows, or is within a few ulps of overflow. (On machines with
 | |
| *>  partial overflow, like the Cray, overflow may occur if the largest
 | |
| *>  singular value is within a factor of 2 of overflow.)
 | |
| *>
 | |
| *>  Underflow is harmless if underflow is gradual. Otherwise, results
 | |
| *>  may correspond to a matrix modified by perturbations of size near
 | |
| *>  the underflow threshold.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL               F, G, H, SSMAX, SSMIN
 | |
| *     ..
 | |
| *
 | |
| *  ====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E0 )
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E0 )
 | |
|       REAL               TWO
 | |
|       PARAMETER          ( TWO = 2.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               AS, AT, AU, C, FA, FHMN, FHMX, GA, HA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       FA = ABS( F )
 | |
|       GA = ABS( G )
 | |
|       HA = ABS( H )
 | |
|       FHMN = MIN( FA, HA )
 | |
|       FHMX = MAX( FA, HA )
 | |
|       IF( FHMN.EQ.ZERO ) THEN
 | |
|          SSMIN = ZERO
 | |
|          IF( FHMX.EQ.ZERO ) THEN
 | |
|             SSMAX = GA
 | |
|          ELSE
 | |
|             SSMAX = MAX( FHMX, GA )*SQRT( ONE+
 | |
|      $              ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 )
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( GA.LT.FHMX ) THEN
 | |
|             AS = ONE + FHMN / FHMX
 | |
|             AT = ( FHMX-FHMN ) / FHMX
 | |
|             AU = ( GA / FHMX )**2
 | |
|             C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) )
 | |
|             SSMIN = FHMN*C
 | |
|             SSMAX = FHMX / C
 | |
|          ELSE
 | |
|             AU = FHMX / GA
 | |
|             IF( AU.EQ.ZERO ) THEN
 | |
| *
 | |
| *              Avoid possible harmful underflow if exponent range
 | |
| *              asymmetric (true SSMIN may not underflow even if
 | |
| *              AU underflows)
 | |
| *
 | |
|                SSMIN = ( FHMN*FHMX ) / GA
 | |
|                SSMAX = GA
 | |
|             ELSE
 | |
|                AS = ONE + FHMN / FHMX
 | |
|                AT = ( FHMX-FHMN ) / FHMX
 | |
|                C = ONE / ( SQRT( ONE+( AS*AU )**2 )+
 | |
|      $             SQRT( ONE+( AT*AU )**2 ) )
 | |
|                SSMIN = ( FHMN*C )*AU
 | |
|                SSMIN = SSMIN + SSMIN
 | |
|                SSMAX = GA / ( C+C )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAS2
 | |
| *
 | |
|       END
 |