215 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLSETS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF,
 | |
| *                          D, DF, X, WORK, LWORK, RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RESULT( 2 ), RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | |
| *      $                   BF( LDB, * ), C( * ), D( * ), CF( * ),
 | |
| *      $                   DF( * ), WORK( LWORK ), X( * )
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLSETS tests CGGLSE - a subroutine for solving linear equality
 | |
| *> constrained least square problem (LSE).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX array, dimension (LDA,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A, AF, Q and R.
 | |
| *>          LDA >= max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          The P-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BF
 | |
| *> \verbatim
 | |
| *>          BF is COMPLEX array, dimension (LDB,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the arrays B, BF, V and S.
 | |
| *>          LDB >= max(P,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension( M )
 | |
| *>          the vector C in the LSE problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CF
 | |
| *> \verbatim
 | |
| *>          CF is COMPLEX array, dimension( M )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension( P )
 | |
| *>          the vector D in the LSE problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DF
 | |
| *> \verbatim
 | |
| *>          DF is COMPLEX array, dimension( P )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension( N )
 | |
| *>          solution vector X in the LSE problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          The test ratios:
 | |
| *>            RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS
 | |
| *>            RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF,
 | |
|      $                   D, DF, X, WORK, LWORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RESULT( 2 ), RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | |
|      $                   BF( LDB, * ), C( * ), D( * ), CF( * ),
 | |
|      $                   DF( * ), WORK( LWORK ), X( * )
 | |
| *
 | |
| *  ====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGGLSE, CLACPY, CGET02
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Copy the matrices A and B to the arrays AF and BF,
 | |
| *     and the vectors C and D to the arrays CF and DF,
 | |
| *
 | |
|       CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | |
|       CALL CLACPY( 'Full', P, N, B, LDB, BF, LDB )
 | |
|       CALL CCOPY( M, C, 1, CF, 1 )
 | |
|       CALL CCOPY( P, D, 1, DF, 1 )
 | |
| *
 | |
| *     Solve LSE problem
 | |
| *
 | |
|       CALL CGGLSE( M, N, P, AF, LDA, BF, LDB, CF, DF, X,
 | |
|      $             WORK, LWORK, INFO )
 | |
| *
 | |
| *     Test the residual for the solution of LSE
 | |
| *
 | |
| *     Compute RESULT(1) = norm( A*x - c ) / norm(A)*norm(X)*EPS
 | |
| *
 | |
|       CALL CCOPY( M, C, 1, CF, 1 )
 | |
|       CALL CCOPY( P, D, 1, DF, 1 )
 | |
|       CALL CGET02( 'No transpose', M, N, 1, A, LDA, X, N, CF, M,
 | |
|      $             RWORK, RESULT( 1 ) )
 | |
| *
 | |
| *     Compute result(2) = norm( B*x - d ) / norm(B)*norm(X)*EPS
 | |
| *
 | |
|       CALL CGET02( 'No transpose', P, N, 1, B, LDB, X, N, DF, P,
 | |
|      $             RWORK, RESULT( 2 ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLSETS
 | |
| *
 | |
|       END
 |