201 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLATRZ + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrz.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrz.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrz.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            L, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
 | |
| *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
 | |
| *> of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
 | |
| *> matrix and, R and A1 are M-by-M upper triangular matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The number of columns of the matrix A containing the
 | |
| *>          meaningful part of the Householder vectors. N-M >= L >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the leading M-by-N upper trapezoidal part of the
 | |
| *>          array A must contain the matrix to be factorized.
 | |
| *>          On exit, the leading M-by-M upper triangular part of A
 | |
| *>          contains the upper triangular matrix R, and elements N-L+1 to
 | |
| *>          N of the first M rows of A, with the array TAU, represent the
 | |
| *>          orthogonal matrix Z as a product of M elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (M)
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (M)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The factorization is obtained by Householder's method.  The kth
 | |
| *>  transformation matrix, Z( k ), which is used to introduce zeros into
 | |
| *>  the ( m - k + 1 )th row of A, is given in the form
 | |
| *>
 | |
| *>     Z( k ) = ( I     0   ),
 | |
| *>              ( 0  T( k ) )
 | |
| *>
 | |
| *>  where
 | |
| *>
 | |
| *>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
 | |
| *>                                                 (   0    )
 | |
| *>                                                 ( z( k ) )
 | |
| *>
 | |
| *>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
 | |
| *>  are chosen to annihilate the elements of the kth row of A2.
 | |
| *>
 | |
| *>  The scalar tau is returned in the kth element of TAU and the vector
 | |
| *>  u( k ) in the kth row of A2, such that the elements of z( k ) are
 | |
| *>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
 | |
| *>  the upper triangular part of A1.
 | |
| *>
 | |
| *>  Z is given by
 | |
| *>
 | |
| *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            L, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLARFG, DLARZ
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( M.EQ.N ) THEN
 | |
|          DO 10 I = 1, N
 | |
|             TAU( I ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       DO 20 I = M, 1, -1
 | |
| *
 | |
| *        Generate elementary reflector H(i) to annihilate
 | |
| *        [ A(i,i) A(i,n-l+1:n) ]
 | |
| *
 | |
|          CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
 | |
| *
 | |
| *        Apply H(i) to A(1:i-1,i:n) from the right
 | |
| *
 | |
|          CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
 | |
|      $               TAU( I ), A( 1, I ), LDA, WORK )
 | |
| *
 | |
|    20 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLATRZ
 | |
| *
 | |
|       END
 |