194 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGEQL2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeql2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeql2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeql2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGEQL2( M, N, A, LDA, TAU, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGEQL2 computes a QL factorization of a real m by n matrix A:
 | |
| *> A = Q * L.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the m by n matrix A.
 | |
| *>          On exit, if m >= n, the lower triangle of the subarray
 | |
| *>          A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
 | |
| *>          if m <= n, the elements on and below the (n-m)-th
 | |
| *>          superdiagonal contain the m by n lower trapezoidal matrix L;
 | |
| *>          the remaining elements, with the array TAU, represent the
 | |
| *>          orthogonal matrix Q as a product of elementary reflectors
 | |
| *>          (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
 | |
| *>  A(1:m-k+i-1,n-k+i), and tau in TAU(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGEQL2( M, N, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, K
 | |
|       REAL               AII
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARF, SLARFG, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGEQL2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       K = MIN( M, N )
 | |
| *
 | |
|       DO 10 I = K, 1, -1
 | |
| *
 | |
| *        Generate elementary reflector H(i) to annihilate
 | |
| *        A(1:m-k+i-1,n-k+i)
 | |
| *
 | |
|          CALL SLARFG( M-K+I, A( M-K+I, N-K+I ), A( 1, N-K+I ), 1,
 | |
|      $                TAU( I ) )
 | |
| *
 | |
| *        Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left
 | |
| *
 | |
|          AII = A( M-K+I, N-K+I )
 | |
|          A( M-K+I, N-K+I ) = ONE
 | |
|          CALL SLARF( 'Left', M-K+I, N-K+I-1, A( 1, N-K+I ), 1, TAU( I ),
 | |
|      $               A, LDA, WORK )
 | |
|          A( M-K+I, N-K+I ) = AII
 | |
|    10 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGEQL2
 | |
| *
 | |
|       END
 |