356 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> CGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGGLSE + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgglse.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgglse.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgglse.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), C( * ), D( * ),
 | |
| *      $                   WORK( * ), X( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGGLSE solves the linear equality-constrained least squares (LSE)
 | |
| *> problem:
 | |
| *>
 | |
| *>         minimize || c - A*x ||_2   subject to   B*x = d
 | |
| *>
 | |
| *> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
 | |
| *> M-vector, and d is a given P-vector. It is assumed that
 | |
| *> P <= N <= M+P, and
 | |
| *>
 | |
| *>          rank(B) = P and  rank( (A) ) = N.
 | |
| *>                               ( (B) )
 | |
| *>
 | |
| *> These conditions ensure that the LSE problem has a unique solution,
 | |
| *> which is obtained using a generalized RQ factorization of the
 | |
| *> matrices (B, A) given by
 | |
| *>
 | |
| *>    B = (0 R)*Q,   A = Z*T*Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B. 0 <= P <= N <= M+P.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the elements on and above the diagonal of the array
 | |
| *>          contain the min(M,N)-by-N upper trapezoidal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix B.
 | |
| *>          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
 | |
| *>          contains the P-by-P upper triangular matrix R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (M)
 | |
| *>          On entry, C contains the right hand side vector for the
 | |
| *>          least squares part of the LSE problem.
 | |
| *>          On exit, the residual sum of squares for the solution
 | |
| *>          is given by the sum of squares of elements N-P+1 to M of
 | |
| *>          vector C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension (P)
 | |
| *>          On entry, D contains the right hand side vector for the
 | |
| *>          constrained equation.
 | |
| *>          On exit, D is destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (N)
 | |
| *>          On exit, X is the solution of the LSE problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,M+N+P).
 | |
| *>          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
 | |
| *>          where NB is an upper bound for the optimal blocksizes for
 | |
| *>          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1:  the upper triangular factor R associated with B in the
 | |
| *>                generalized RQ factorization of the pair (B, A) is
 | |
| *>                singular, so that rank(B) < P; the least squares
 | |
| *>                solution could not be computed.
 | |
| *>          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
 | |
| *>                T associated with A in the generalized RQ factorization
 | |
| *>                of the pair (B, A) is singular, so that
 | |
| *>                rank( (A) ) < N; the least squares solution could not
 | |
| *>                    ( (B) )
 | |
| *>                be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexOTHERsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), C( * ), D( * ),
 | |
|      $                   WORK( * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
 | |
|      $                   NB4, NR
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CCOPY, CGEMV, CGGRQF, CTRMV, CTRTRS,
 | |
|      $                   CUNMQR, CUNMRQ, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV 
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       MN = MIN( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Calculate workspace
 | |
| *
 | |
|       IF( INFO.EQ.0) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             LWKMIN = 1
 | |
|             LWKOPT = 1
 | |
|          ELSE
 | |
|             NB1 = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
 | |
|             NB2 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
 | |
|             NB3 = ILAENV( 1, 'CUNMQR', ' ', M, N, P, -1 )
 | |
|             NB4 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 )
 | |
|             NB = MAX( NB1, NB2, NB3, NB4 )
 | |
|             LWKMIN = M + N + P
 | |
|             LWKOPT = P + MN + MAX( M, N )*NB
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGGLSE', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Compute the GRQ factorization of matrices B and A:
 | |
| *
 | |
| *            B*Q**H = (  0  T12 ) P   Z**H*A*Q**H = ( R11 R12 ) N-P
 | |
| *                        N-P  P                     (  0  R22 ) M+P-N
 | |
| *                                                      N-P  P
 | |
| *
 | |
| *     where T12 and R11 are upper triangular, and Q and Z are
 | |
| *     unitary.
 | |
| *
 | |
|       CALL CGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
 | |
|      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
 | |
|       LOPT = WORK( P+MN+1 )
 | |
| *
 | |
| *     Update c = Z**H *c = ( c1 ) N-P
 | |
| *                       ( c2 ) M+P-N
 | |
| *
 | |
|       CALL CUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA,
 | |
|      $             WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ),
 | |
|      $             LWORK-P-MN, INFO )
 | |
|       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
 | |
| *
 | |
| *     Solve T12*x2 = d for x2
 | |
| *
 | |
|       IF( P.GT.0 ) THEN
 | |
|          CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
 | |
|      $                B( 1, N-P+1 ), LDB, D, P, INFO )
 | |
| *
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             INFO = 1
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        Put the solution in X
 | |
| *
 | |
|       CALL CCOPY( P, D, 1, X( N-P+1 ), 1 )
 | |
| *
 | |
| *        Update c1
 | |
| *
 | |
|          CALL CGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA,
 | |
|      $               D, 1, CONE, C, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Solve R11*x1 = c1 for x1
 | |
| *
 | |
|       IF( N.GT.P ) THEN
 | |
|          CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
 | |
|      $                A, LDA, C, N-P, INFO )
 | |
| *
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             INFO = 2
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        Put the solutions in X
 | |
| *
 | |
|          CALL CCOPY( N-P, C, 1, X, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Compute the residual vector:
 | |
| *
 | |
|       IF( M.LT.N ) THEN
 | |
|          NR = M + P - N
 | |
|          IF( NR.GT.0 )
 | |
|      $      CALL CGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ),
 | |
|      $                  LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 )
 | |
|       ELSE
 | |
|          NR = P
 | |
|       END IF
 | |
|       IF( NR.GT.0 ) THEN
 | |
|          CALL CTRMV( 'Upper', 'No transpose', 'Non unit', NR,
 | |
|      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
 | |
|          CALL CAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Backward transformation x = Q**H*x
 | |
| *
 | |
|       CALL CUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB,
 | |
|      $             WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
 | |
|       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGGLSE
 | |
| *
 | |
|       END
 |