OpenBLAS/utest/test_extensions/test_zaxpby.c

631 lines
17 KiB
C

/*****************************************************************************
Copyright (c) 2023, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************************/
#include "utest/openblas_utest.h"
#include "common.h"
#define DATASIZE 100
#define INCREMENT 2
struct DATA_ZAXPBY {
double x_test[DATASIZE * INCREMENT * 2];
double x_verify[DATASIZE * INCREMENT * 2];
double y_test[DATASIZE * INCREMENT * 2];
double y_verify[DATASIZE * INCREMENT * 2];
};
#ifdef BUILD_COMPLEX16
static struct DATA_ZAXPBY data_zaxpby;
/**
* Fortran API specific function
* Test zaxpby by comparing it with zscal and zaxpy.
* Compare with the following options:
*
* param n - number of elements in vectors x and y
* param alpha - scalar alpha
* param incx - increment for the elements of x
* param beta - scalar beta
* param incy - increment for the elements of y
* return norm of difference
*/
static double check_zaxpby(blasint n, double *alpha, blasint incx, double *beta, blasint incy)
{
blasint i;
// zscal accept only positive increments
blasint incx_abs = labs(incx);
blasint incy_abs = labs(incy);
// Fill vectors x, y
drand_generate(data_zaxpby.x_test, n * incx_abs * 2);
drand_generate(data_zaxpby.y_test, n * incy_abs * 2);
// Copy vector x for zaxpy
for (i = 0; i < n * incx_abs * 2; i++)
data_zaxpby.x_verify[i] = data_zaxpby.x_test[i];
// Copy vector y for zscal
for (i = 0; i < n * incy_abs * 2; i++)
data_zaxpby.y_verify[i] = data_zaxpby.y_test[i];
// Find beta*y
BLASFUNC(zscal)(&n, beta, data_zaxpby.y_verify, &incy_abs);
// Find sum of alpha*x and beta*y
BLASFUNC(zaxpy)(&n, alpha, data_zaxpby.x_verify, &incx,
data_zaxpby.y_verify, &incy);
BLASFUNC(zaxpby)(&n, alpha, data_zaxpby.x_test, &incx,
beta, data_zaxpby.y_test, &incy);
// Find the differences between output vector caculated by zaxpby and zaxpy
for (i = 0; i < n * incy_abs * 2; i++)
data_zaxpby.y_test[i] -= data_zaxpby.y_verify[i];
// Find the norm of differences
return BLASFUNC(dznrm2)(&n, data_zaxpby.y_test, &incy_abs);
}
/**
* C API specific function
* Test zaxpby by comparing it with zscal and zaxpy.
* Compare with the following options:
*
* param n - number of elements in vectors x and y
* param alpha - scalar alpha
* param incx - increment for the elements of x
* param beta - scalar beta
* param incy - increment for the elements of y
* return norm of difference
*/
static double c_api_check_zaxpby(blasint n, double *alpha, blasint incx, double *beta, blasint incy)
{
blasint i;
// zscal accept only positive increments
blasint incx_abs = labs(incx);
blasint incy_abs = labs(incy);
// Fill vectors x, y
drand_generate(data_zaxpby.x_test, n * incx_abs * 2);
drand_generate(data_zaxpby.y_test, n * incy_abs * 2);
// Copy vector x for zaxpy
for (i = 0; i < n * incx_abs * 2; i++)
data_zaxpby.x_verify[i] = data_zaxpby.x_test[i];
// Copy vector y for zscal
for (i = 0; i < n * incy_abs * 2; i++)
data_zaxpby.y_verify[i] = data_zaxpby.y_test[i];
// Find beta*y
cblas_zscal(n, beta, data_zaxpby.y_verify, incy_abs);
// Find sum of alpha*x and beta*y
cblas_zaxpy(n, alpha, data_zaxpby.x_verify, incx,
data_zaxpby.y_verify, incy);
cblas_zaxpby(n, alpha, data_zaxpby.x_test, incx,
beta, data_zaxpby.y_test, incy);
// Find the differences between output vector caculated by zaxpby and zaxpy
for (i = 0; i < n * incy_abs * 2; i++)
data_zaxpby.y_test[i] -= data_zaxpby.y_verify[i];
// Find the norm of differences
return cblas_dznrm2(n, data_zaxpby.y_test, incy_abs);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
*/
CTEST(zaxpby, inc_x_1_inc_y_1_N_100)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is 1
*/
CTEST(zaxpby, inc_x_2_inc_y_1_N_100)
{
blasint n = DATASIZE, incx = 2, incy = 1;
double alpha[] = {2.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 2
*/
CTEST(zaxpby, inc_x_1_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = 1, incy = 2;
double alpha[] = {1.0, 1.0};
double beta[] = {2.0, 1.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is 2
*/
CTEST(zaxpby, inc_x_2_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = 2, incy = 2;
double alpha[] = {3.0, 1.0};
double beta[] = {4.0, 3.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is -1
* Stride of vector y is 2
*/
CTEST(zaxpby, inc_x_neg_1_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = -1, incy = 2;
double alpha[] = {5.0, 2.2};
double beta[] = {4.0, 5.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is -1
*/
CTEST(zaxpby, inc_x_2_inc_y_neg_1_N_100)
{
blasint n = DATASIZE, incx = 2, incy = -1;
double alpha[] = {1.0, 1.0};
double beta[] = {6.0, 3.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is -2
* Stride of vector y is -1
*/
CTEST(zaxpby, inc_x_neg_2_inc_y_neg_1_N_100)
{
blasint n = DATASIZE, incx = -2, incy = -1;
double alpha[] = {7.0, 2.0};
double beta[] = {3.5, 1.3};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar alpha is zero
*/
CTEST(zaxpby, inc_x_1_inc_y_1_N_100_alpha_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {0.0, 0.0};
double beta[] = {1.0, 1.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar beta is zero
*/
CTEST(zaxpby, inc_x_1_inc_y_1_N_100_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {0.0, 0.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar alpha is zero
* Scalar beta is zero
*/
CTEST(zaxpby, inc_x_1_inc_y_1_N_100_alpha_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {0.0, 0.0};
double beta[] = {0.0, 0.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 2
* Scalar alpha is zero
* Scalar beta is zero
*/
CTEST(zaxpby, inc_x_1_inc_y_2_N_100_alpha_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 2;
double alpha[] = {0.0, 0.0};
double beta[] = {0.0, 0.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* Fortran API specific test
* Check if n - size of vectors x, y is zero
*/
CTEST(zaxpby, check_n_zero)
{
blasint n = 0, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_1_N_100)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is 1
*/
CTEST(zaxpby, c_api_inc_x_2_inc_y_1_N_100)
{
blasint n = DATASIZE, incx = 2, incy = 1;
double alpha[] = {2.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 2
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = 1, incy = 2;
double alpha[] = {1.0, 1.0};
double beta[] = {2.0, 2.1};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is 2
*/
CTEST(zaxpby, c_api_inc_x_2_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = 2, incy = 2;
double alpha[] = {3.0, 2.0};
double beta[] = {4.0, 3.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is -1
* Stride of vector y is 2
*/
CTEST(zaxpby, c_api_inc_x_neg_1_inc_y_2_N_100)
{
blasint n = DATASIZE, incx = -1, incy = 2;
double alpha[] = {5.0, 2.0};
double beta[] = {4.0, 3.1};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 2
* Stride of vector y is -1
*/
CTEST(zaxpby, c_api_inc_x_2_inc_y_neg_1_N_100)
{
blasint n = DATASIZE, incx = 2, incy = -1;
double alpha[] = {1.0, 1.0};
double beta[] = {6.0, 2.3};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is -2
* Stride of vector y is -1
*/
CTEST(zaxpby, c_api_inc_x_neg_2_inc_y_neg_1_N_100)
{
blasint n = DATASIZE, incx = -2, incy = -1;
double alpha[] = {7.0, 1.0};
double beta[] = {3.5, 1.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar alpha is zero
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_1_N_100_alpha_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {0.0, 0.0};
double beta[] = {1.0, 1.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar beta is zero
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_1_N_100_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {0.0, 0.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 1
* Scalar alpha is zero
* Scalar beta is zero
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_1_N_100_alpha_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 1;
double alpha[] = {0.0, 0.0};
double beta[] = {0.0, 0.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Test zaxpby by comparing it with zscal and zaxpy.
* Test with the following options:
*
* Size of vectors x, y is 100
* Stride of vector x is 1
* Stride of vector y is 2
* Scalar alpha is zero
* Scalar beta is zero
*/
CTEST(zaxpby, c_api_inc_x_1_inc_y_2_N_100_alpha_beta_zero)
{
blasint n = DATASIZE, incx = 1, incy = 2;
double alpha[] = {0.0, 0.0};
double beta[] = {0.0, 0.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
/**
* C API specific test
* Check if n - size of vectors x, y is zero
*/
CTEST(zaxpby, c_api_check_n_zero)
{
blasint n = 0, incx = 1, incy = 1;
double alpha[] = {1.0, 1.0};
double beta[] = {1.0, 1.0};
double norm = c_api_check_zaxpby(n, alpha, incx, beta, incy);
ASSERT_DBL_NEAR_TOL(0.0, norm, DOUBLE_EPS);
}
#endif