384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAGTS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagts.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagts.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagts.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, JOB, N
 | 
						|
*       REAL               TOL
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IN( * )
 | 
						|
*       REAL               A( * ), B( * ), C( * ), D( * ), Y( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAGTS may be used to solve one of the systems of equations
 | 
						|
*>
 | 
						|
*>    (T - lambda*I)*x = y   or   (T - lambda*I)**T*x = y,
 | 
						|
*>
 | 
						|
*> where T is an n by n tridiagonal matrix, for x, following the
 | 
						|
*> factorization of (T - lambda*I) as
 | 
						|
*>
 | 
						|
*>    (T - lambda*I) = P*L*U ,
 | 
						|
*>
 | 
						|
*> by routine SLAGTF. The choice of equation to be solved is
 | 
						|
*> controlled by the argument JOB, and in each case there is an option
 | 
						|
*> to perturb zero or very small diagonal elements of U, this option
 | 
						|
*> being intended for use in applications such as inverse iteration.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is INTEGER
 | 
						|
*>          Specifies the job to be performed by SLAGTS as follows:
 | 
						|
*>          =  1: The equations  (T - lambda*I)x = y  are to be solved,
 | 
						|
*>                but diagonal elements of U are not to be perturbed.
 | 
						|
*>          = -1: The equations  (T - lambda*I)x = y  are to be solved
 | 
						|
*>                and, if overflow would otherwise occur, the diagonal
 | 
						|
*>                elements of U are to be perturbed. See argument TOL
 | 
						|
*>                below.
 | 
						|
*>          =  2: The equations  (T - lambda*I)**Tx = y  are to be solved,
 | 
						|
*>                but diagonal elements of U are not to be perturbed.
 | 
						|
*>          = -2: The equations  (T - lambda*I)**Tx = y  are to be solved
 | 
						|
*>                and, if overflow would otherwise occur, the diagonal
 | 
						|
*>                elements of U are to be perturbed. See argument TOL
 | 
						|
*>                below.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (N)
 | 
						|
*>          On entry, A must contain the diagonal elements of U as
 | 
						|
*>          returned from SLAGTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (N-1)
 | 
						|
*>          On entry, B must contain the first super-diagonal elements of
 | 
						|
*>          U as returned from SLAGTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (N-1)
 | 
						|
*>          On entry, C must contain the sub-diagonal elements of L as
 | 
						|
*>          returned from SLAGTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N-2)
 | 
						|
*>          On entry, D must contain the second super-diagonal elements
 | 
						|
*>          of U as returned from SLAGTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IN
 | 
						|
*> \verbatim
 | 
						|
*>          IN is INTEGER array, dimension (N)
 | 
						|
*>          On entry, IN must contain details of the matrix P as returned
 | 
						|
*>          from SLAGTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is REAL array, dimension (N)
 | 
						|
*>          On entry, the right hand side vector y.
 | 
						|
*>          On exit, Y is overwritten by the solution vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is REAL
 | 
						|
*>          On entry, with  JOB .lt. 0, TOL should be the minimum
 | 
						|
*>          perturbation to be made to very small diagonal elements of U.
 | 
						|
*>          TOL should normally be chosen as about eps*norm(U), where eps
 | 
						|
*>          is the relative machine precision, but if TOL is supplied as
 | 
						|
*>          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
 | 
						|
*>          If  JOB .gt. 0  then TOL is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, TOL is changed as described above, only if TOL is
 | 
						|
*>          non-positive on entry. Otherwise TOL is unchanged.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0   : successful exit
 | 
						|
*>          .lt. 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          .gt. 0: overflow would occur when computing the INFO(th)
 | 
						|
*>                  element of the solution vector x. This can only occur
 | 
						|
*>                  when JOB is supplied as positive and either means
 | 
						|
*>                  that a diagonal element of U is very small, or that
 | 
						|
*>                  the elements of the right-hand side vector y are very
 | 
						|
*>                  large.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, JOB, N
 | 
						|
      REAL               TOL
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IN( * )
 | 
						|
      REAL               A( * ), B( * ), C( * ), D( * ), Y( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            K
 | 
						|
      REAL               ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SIGN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLAGTS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      SFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      BIGNUM = ONE / SFMIN
 | 
						|
*
 | 
						|
      IF( JOB.LT.0 ) THEN
 | 
						|
         IF( TOL.LE.ZERO ) THEN
 | 
						|
            TOL = ABS( A( 1 ) )
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
 | 
						|
            DO 10 K = 3, N
 | 
						|
               TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
 | 
						|
     $               ABS( D( K-2 ) ) )
 | 
						|
   10       CONTINUE
 | 
						|
            TOL = TOL*EPS
 | 
						|
            IF( TOL.EQ.ZERO )
 | 
						|
     $         TOL = EPS
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ABS( JOB ).EQ.1 ) THEN
 | 
						|
         DO 20 K = 2, N
 | 
						|
            IF( IN( K-1 ).EQ.0 ) THEN
 | 
						|
               Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
 | 
						|
            ELSE
 | 
						|
               TEMP = Y( K-1 )
 | 
						|
               Y( K-1 ) = Y( K )
 | 
						|
               Y( K ) = TEMP - C( K-1 )*Y( K )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
         IF( JOB.EQ.1 ) THEN
 | 
						|
            DO 30 K = N, 1, -1
 | 
						|
               IF( K.LE.N-2 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
 | 
						|
               ELSE IF( K.EQ.N-1 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K )*Y( K+1 )
 | 
						|
               ELSE
 | 
						|
                  TEMP = Y( K )
 | 
						|
               END IF
 | 
						|
               AK = A( K )
 | 
						|
               ABSAK = ABS( AK )
 | 
						|
               IF( ABSAK.LT.ONE ) THEN
 | 
						|
                  IF( ABSAK.LT.SFMIN ) THEN
 | 
						|
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | 
						|
     $                    THEN
 | 
						|
                        INFO = K
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP*BIGNUM
 | 
						|
                        AK = AK*BIGNUM
 | 
						|
                     END IF
 | 
						|
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | 
						|
                     INFO = K
 | 
						|
                     RETURN
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
               Y( K ) = TEMP / AK
 | 
						|
   30       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 50 K = N, 1, -1
 | 
						|
               IF( K.LE.N-2 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
 | 
						|
               ELSE IF( K.EQ.N-1 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K )*Y( K+1 )
 | 
						|
               ELSE
 | 
						|
                  TEMP = Y( K )
 | 
						|
               END IF
 | 
						|
               AK = A( K )
 | 
						|
               PERT = SIGN( TOL, AK )
 | 
						|
   40          CONTINUE
 | 
						|
               ABSAK = ABS( AK )
 | 
						|
               IF( ABSAK.LT.ONE ) THEN
 | 
						|
                  IF( ABSAK.LT.SFMIN ) THEN
 | 
						|
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | 
						|
     $                    THEN
 | 
						|
                        AK = AK + PERT
 | 
						|
                        PERT = 2*PERT
 | 
						|
                        GO TO 40
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP*BIGNUM
 | 
						|
                        AK = AK*BIGNUM
 | 
						|
                     END IF
 | 
						|
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | 
						|
                     AK = AK + PERT
 | 
						|
                     PERT = 2*PERT
 | 
						|
                     GO TO 40
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
               Y( K ) = TEMP / AK
 | 
						|
   50       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Come to here if  JOB = 2 or -2
 | 
						|
*
 | 
						|
         IF( JOB.EQ.2 ) THEN
 | 
						|
            DO 60 K = 1, N
 | 
						|
               IF( K.GE.3 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
 | 
						|
               ELSE IF( K.EQ.2 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
 | 
						|
               ELSE
 | 
						|
                  TEMP = Y( K )
 | 
						|
               END IF
 | 
						|
               AK = A( K )
 | 
						|
               ABSAK = ABS( AK )
 | 
						|
               IF( ABSAK.LT.ONE ) THEN
 | 
						|
                  IF( ABSAK.LT.SFMIN ) THEN
 | 
						|
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | 
						|
     $                    THEN
 | 
						|
                        INFO = K
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP*BIGNUM
 | 
						|
                        AK = AK*BIGNUM
 | 
						|
                     END IF
 | 
						|
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | 
						|
                     INFO = K
 | 
						|
                     RETURN
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
               Y( K ) = TEMP / AK
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 80 K = 1, N
 | 
						|
               IF( K.GE.3 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
 | 
						|
               ELSE IF( K.EQ.2 ) THEN
 | 
						|
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
 | 
						|
               ELSE
 | 
						|
                  TEMP = Y( K )
 | 
						|
               END IF
 | 
						|
               AK = A( K )
 | 
						|
               PERT = SIGN( TOL, AK )
 | 
						|
   70          CONTINUE
 | 
						|
               ABSAK = ABS( AK )
 | 
						|
               IF( ABSAK.LT.ONE ) THEN
 | 
						|
                  IF( ABSAK.LT.SFMIN ) THEN
 | 
						|
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | 
						|
     $                    THEN
 | 
						|
                        AK = AK + PERT
 | 
						|
                        PERT = 2*PERT
 | 
						|
                        GO TO 70
 | 
						|
                     ELSE
 | 
						|
                        TEMP = TEMP*BIGNUM
 | 
						|
                        AK = AK*BIGNUM
 | 
						|
                     END IF
 | 
						|
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | 
						|
                     AK = AK + PERT
 | 
						|
                     PERT = 2*PERT
 | 
						|
                     GO TO 70
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
               Y( K ) = TEMP / AK
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 90 K = N, 2, -1
 | 
						|
            IF( IN( K-1 ).EQ.0 ) THEN
 | 
						|
               Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
 | 
						|
            ELSE
 | 
						|
               TEMP = Y( K-1 )
 | 
						|
               Y( K-1 ) = Y( K )
 | 
						|
               Y( K ) = TEMP - C( K-1 )*Y( K )
 | 
						|
            END IF
 | 
						|
   90    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     End of SLAGTS
 | 
						|
*
 | 
						|
      END
 |