328 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLA_HERCOND_C + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_c.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_c.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_c.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
 | 
						|
*                                    CAPPLY, INFO, WORK, RWORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       LOGICAL            CAPPLY
 | 
						|
*       INTEGER            N, LDA, LDAF, INFO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * )
 | 
						|
*       REAL               C ( * ), RWORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLA_HERCOND_C computes the infinity norm condition number of
 | 
						|
*>    op(A) * inv(diag(C)) where C is a REAL vector.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>       = 'U':  Upper triangle of A is stored;
 | 
						|
*>       = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX array, dimension (LDAF,N)
 | 
						|
*>     The block diagonal matrix D and the multipliers used to
 | 
						|
*>     obtain the factor U or L as computed by CHETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>     Details of the interchanges and the block structure of D
 | 
						|
*>     as determined by CHETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (N)
 | 
						|
*>     The vector C in the formula op(A) * inv(diag(C)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CAPPLY
 | 
						|
*> \verbatim
 | 
						|
*>          CAPPLY is LOGICAL
 | 
						|
*>     If .TRUE. then access the vector C in the formula above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>       = 0:  Successful exit.
 | 
						|
*>     i > 0:  The ith argument is invalid.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexHEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
 | 
						|
     $                             CAPPLY, INFO, WORK, RWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      LOGICAL            CAPPLY
 | 
						|
      INTEGER            N, LDA, LDAF, INFO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * )
 | 
						|
      REAL               C ( * ), RWORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            KASE, I, J
 | 
						|
      REAL               AINVNM, ANORM, TMP
 | 
						|
      LOGICAL            UP, UPPER
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACN2, CHETRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function Definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      CLA_HERCOND_C = 0.0E+0
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLA_HERCOND_C', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      UP = .FALSE.
 | 
						|
      IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
 | 
						|
*
 | 
						|
*     Compute norm of op(A)*op2(C).
 | 
						|
*
 | 
						|
      ANORM = 0.0E+0
 | 
						|
      IF ( UP ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0E+0
 | 
						|
            IF ( CAPPLY ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + CABS1( A( J, I ) ) / C( J )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + CABS1( A( I, J ) ) / C( J )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + CABS1( A( J, I ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + CABS1( A( I, J ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            RWORK( I ) = TMP
 | 
						|
            ANORM = MAX( ANORM, TMP )
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0E+0
 | 
						|
            IF ( CAPPLY ) THEN
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + CABS1( A( I, J ) ) / C( J )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + CABS1( A( J, I ) ) / C( J )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, I
 | 
						|
                  TMP = TMP + CABS1( A( I, J ) )
 | 
						|
               END DO
 | 
						|
               DO J = I+1, N
 | 
						|
                  TMP = TMP + CABS1( A( J, I ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            RWORK( I ) = TMP
 | 
						|
            ANORM = MAX( ANORM, TMP )
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         CLA_HERCOND_C = 1.0E+0
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(op(A)).
 | 
						|
*
 | 
						|
      AINVNM = 0.0E+0
 | 
						|
*
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * RWORK( I )
 | 
						|
            END DO
 | 
						|
*
 | 
						|
            IF ( UP ) THEN
 | 
						|
               CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Multiply by inv(C).
 | 
						|
*
 | 
						|
            IF ( CAPPLY ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(C**H).
 | 
						|
*
 | 
						|
            IF ( CAPPLY ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF ( UP ) THEN
 | 
						|
               CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * RWORK( I )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM .NE. 0.0E+0 )
 | 
						|
     $   CLA_HERCOND_C = 1.0E+0 / AINVNM
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
      END
 |