1076 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1076 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER 
 | 
						|
matrices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZHPEVX + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, */
 | 
						|
/*                          ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, */
 | 
						|
/*                          IFAIL, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBZ, RANGE, UPLO */
 | 
						|
/*       INTEGER            IL, INFO, IU, LDZ, M, N */
 | 
						|
/*       DOUBLE PRECISION   ABSTOL, VL, VU */
 | 
						|
/*       INTEGER            IFAIL( * ), IWORK( * ) */
 | 
						|
/*       DOUBLE PRECISION   RWORK( * ), W( * ) */
 | 
						|
/*       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZHPEVX computes selected eigenvalues and, optionally, eigenvectors */
 | 
						|
/* > of a complex Hermitian matrix A in packed storage. */
 | 
						|
/* > Eigenvalues/vectors can be selected by specifying either a range of */
 | 
						|
/* > values or a range of indices for the desired eigenvalues. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBZ is CHARACTER*1 */
 | 
						|
/* >          = 'N':  Compute eigenvalues only; */
 | 
						|
/* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] RANGE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RANGE is CHARACTER*1 */
 | 
						|
/* >          = 'A': all eigenvalues will be found; */
 | 
						|
/* >          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | 
						|
/* >                 will be found; */
 | 
						|
/* >          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          = 'U':  Upper triangle of A is stored; */
 | 
						|
/* >          = 'L':  Lower triangle of A is stored. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] AP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
 | 
						|
/* >          On entry, the upper or lower triangle of the Hermitian matrix */
 | 
						|
/* >          A, packed columnwise in a linear array.  The j-th column of A */
 | 
						|
/* >          is stored in the array AP as follows: */
 | 
						|
/* >          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 | 
						|
/* >          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, AP is overwritten by values generated during the */
 | 
						|
/* >          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
 | 
						|
/* >          and first superdiagonal of the tridiagonal matrix T overwrite */
 | 
						|
/* >          the corresponding elements of A, and if UPLO = 'L', the */
 | 
						|
/* >          diagonal and first subdiagonal of T overwrite the */
 | 
						|
/* >          corresponding elements of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is DOUBLE PRECISION */
 | 
						|
/* >          If RANGE='V', the lower bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues. VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VU is DOUBLE PRECISION */
 | 
						|
/* >          If RANGE='V', the upper bound of the interval to */
 | 
						|
/* >          be searched for eigenvalues. VL < VU. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IL is INTEGER */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          smallest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IU is INTEGER */
 | 
						|
/* >          If RANGE='I', the index of the */
 | 
						|
/* >          largest eigenvalue to be returned. */
 | 
						|
/* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | 
						|
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ABSTOL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ABSTOL is DOUBLE PRECISION */
 | 
						|
/* >          The absolute error tolerance for the eigenvalues. */
 | 
						|
/* >          An approximate eigenvalue is accepted as converged */
 | 
						|
/* >          when it is determined to lie in an interval [a,b] */
 | 
						|
/* >          of width less than or equal to */
 | 
						|
/* > */
 | 
						|
/* >                  ABSTOL + EPS *   f2cmax( |a|,|b| ) , */
 | 
						|
/* > */
 | 
						|
/* >          where EPS is the machine precision.  If ABSTOL is less than */
 | 
						|
/* >          or equal to zero, then  EPS*|T|  will be used in its place, */
 | 
						|
/* >          where |T| is the 1-norm of the tridiagonal matrix obtained */
 | 
						|
/* >          by reducing AP to tridiagonal form. */
 | 
						|
/* > */
 | 
						|
/* >          Eigenvalues will be computed most accurately when ABSTOL is */
 | 
						|
/* >          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 | 
						|
/* >          If this routine returns with INFO>0, indicating that some */
 | 
						|
/* >          eigenvectors did not converge, try setting ABSTOL to */
 | 
						|
/* >          2*DLAMCH('S'). */
 | 
						|
/* > */
 | 
						|
/* >          See "Computing Small Singular Values of Bidiagonal Matrices */
 | 
						|
/* >          with Guaranteed High Relative Accuracy," by Demmel and */
 | 
						|
/* >          Kahan, LAPACK Working Note #3. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The total number of eigenvalues found.  0 <= M <= N. */
 | 
						|
/* >          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] W */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          W is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          If INFO = 0, the selected eigenvalues in ascending order. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M)) */
 | 
						|
/* >          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 | 
						|
/* >          contain the orthonormal eigenvectors of the matrix A */
 | 
						|
/* >          corresponding to the selected eigenvalues, with the i-th */
 | 
						|
/* >          column of Z holding the eigenvector associated with W(i). */
 | 
						|
/* >          If an eigenvector fails to converge, then that column of Z */
 | 
						|
/* >          contains the latest approximation to the eigenvector, and */
 | 
						|
/* >          the index of the eigenvector is returned in IFAIL. */
 | 
						|
/* >          If JOBZ = 'N', then Z is not referenced. */
 | 
						|
/* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | 
						|
/* >          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | 
						|
/* >          is not known in advance and an upper bound must be used. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDZ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | 
						|
/* >          JOBZ = 'V', LDZ >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX*16 array, dimension (2*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is DOUBLE PRECISION array, dimension (7*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (5*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IFAIL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IFAIL is INTEGER array, dimension (N) */
 | 
						|
/* >          If JOBZ = 'V', then if INFO = 0, the first M elements of */
 | 
						|
/* >          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
 | 
						|
/* >          indices of the eigenvectors that failed to converge. */
 | 
						|
/* >          If JOBZ = 'N', then IFAIL is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  if INFO = i, then i eigenvectors failed to converge. */
 | 
						|
/* >                Their indices are stored in array IFAIL. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16OTHEReigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void zhpevx_(char *jobz, char *range, char *uplo, integer *n, 
 | 
						|
	doublecomplex *ap, doublereal *vl, doublereal *vu, integer *il, 
 | 
						|
	integer *iu, doublereal *abstol, integer *m, doublereal *w, 
 | 
						|
	doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal *
 | 
						|
	rwork, integer *iwork, integer *ifail, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1, i__2;
 | 
						|
    doublereal d__1, d__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer indd, inde;
 | 
						|
    doublereal anrm;
 | 
						|
    integer imax;
 | 
						|
    doublereal rmin, rmax;
 | 
						|
    logical test;
 | 
						|
    integer itmp1, i__, j, indee;
 | 
						|
    extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    doublereal sigma;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    char order[1];
 | 
						|
    extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *);
 | 
						|
    logical wantz;
 | 
						|
    extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *);
 | 
						|
    integer jj;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    logical alleig, indeig;
 | 
						|
    integer iscale, indibl;
 | 
						|
    logical valeig;
 | 
						|
    doublereal safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern void zdscal_(
 | 
						|
	    integer *, doublereal *, doublecomplex *, integer *);
 | 
						|
    doublereal abstll, bignum;
 | 
						|
    integer indiwk, indisp, indtau;
 | 
						|
    extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
 | 
						|
	     integer *), dstebz_(char *, char *, integer *, doublereal *, 
 | 
						|
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, integer *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, integer *);
 | 
						|
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
 | 
						|
	    doublereal *);
 | 
						|
    integer indrwk, indwrk, nsplit;
 | 
						|
    doublereal smlnum;
 | 
						|
    extern /* Subroutine */ void zhptrd_(char *, integer *, doublecomplex *, 
 | 
						|
	    doublereal *, doublereal *, doublecomplex *, integer *), 
 | 
						|
	    zstein_(integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *, integer *, doublecomplex *, integer *, 
 | 
						|
	    doublereal *, integer *, integer *, integer *), zsteqr_(char *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *,
 | 
						|
	     doublereal *, integer *), zupgtr_(char *, integer *, 
 | 
						|
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *), zupmtr_(char *, char *, char 
 | 
						|
	    *, integer *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *);
 | 
						|
    doublereal eps, vll, vuu, tmp1;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --ap;
 | 
						|
    --w;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --work;
 | 
						|
    --rwork;
 | 
						|
    --iwork;
 | 
						|
    --ifail;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    wantz = lsame_(jobz, "V");
 | 
						|
    alleig = lsame_(range, "A");
 | 
						|
    valeig = lsame_(range, "V");
 | 
						|
    indeig = lsame_(range, "I");
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (! (wantz || lsame_(jobz, "N"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (alleig || valeig || indeig)) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
 | 
						|
	    "U"))) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else {
 | 
						|
	if (valeig) {
 | 
						|
	    if (*n > 0 && *vu <= *vl) {
 | 
						|
		*info = -7;
 | 
						|
	    }
 | 
						|
	} else if (indeig) {
 | 
						|
	    if (*il < 1 || *il > f2cmax(1,*n)) {
 | 
						|
		*info = -8;
 | 
						|
	    } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
 | 
						|
		*info = -9;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*info == 0) {
 | 
						|
	if (*ldz < 1 || wantz && *ldz < *n) {
 | 
						|
	    *info = -14;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZHPEVX", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    *m = 0;
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 1) {
 | 
						|
	if (alleig || indeig) {
 | 
						|
	    *m = 1;
 | 
						|
	    w[1] = ap[1].r;
 | 
						|
	} else {
 | 
						|
	    if (*vl < ap[1].r && *vu >= ap[1].r) {
 | 
						|
		*m = 1;
 | 
						|
		w[1] = ap[1].r;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (wantz) {
 | 
						|
	    i__1 = z_dim1 + 1;
 | 
						|
	    z__[i__1].r = 1., z__[i__1].i = 0.;
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants. */
 | 
						|
 | 
						|
    safmin = dlamch_("Safe minimum");
 | 
						|
    eps = dlamch_("Precision");
 | 
						|
    smlnum = safmin / eps;
 | 
						|
    bignum = 1. / smlnum;
 | 
						|
    rmin = sqrt(smlnum);
 | 
						|
/* Computing MIN */
 | 
						|
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 | 
						|
    rmax = f2cmin(d__1,d__2);
 | 
						|
 | 
						|
/*     Scale matrix to allowable range, if necessary. */
 | 
						|
 | 
						|
    iscale = 0;
 | 
						|
    abstll = *abstol;
 | 
						|
    if (valeig) {
 | 
						|
	vll = *vl;
 | 
						|
	vuu = *vu;
 | 
						|
    } else {
 | 
						|
	vll = 0.;
 | 
						|
	vuu = 0.;
 | 
						|
    }
 | 
						|
    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
 | 
						|
    if (anrm > 0. && anrm < rmin) {
 | 
						|
	iscale = 1;
 | 
						|
	sigma = rmin / anrm;
 | 
						|
    } else if (anrm > rmax) {
 | 
						|
	iscale = 1;
 | 
						|
	sigma = rmax / anrm;
 | 
						|
    }
 | 
						|
    if (iscale == 1) {
 | 
						|
	i__1 = *n * (*n + 1) / 2;
 | 
						|
	zdscal_(&i__1, &sigma, &ap[1], &c__1);
 | 
						|
	if (*abstol > 0.) {
 | 
						|
	    abstll = *abstol * sigma;
 | 
						|
	}
 | 
						|
	if (valeig) {
 | 
						|
	    vll = *vl * sigma;
 | 
						|
	    vuu = *vu * sigma;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */
 | 
						|
 | 
						|
    indd = 1;
 | 
						|
    inde = indd + *n;
 | 
						|
    indrwk = inde + *n;
 | 
						|
    indtau = 1;
 | 
						|
    indwrk = indtau + *n;
 | 
						|
    zhptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], &
 | 
						|
	    iinfo);
 | 
						|
 | 
						|
/*     If all eigenvalues are desired and ABSTOL is less than or equal */
 | 
						|
/*     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails */
 | 
						|
/*     for some eigenvalue, then try DSTEBZ. */
 | 
						|
 | 
						|
    test = FALSE_;
 | 
						|
    if (indeig) {
 | 
						|
	if (*il == 1 && *iu == *n) {
 | 
						|
	    test = TRUE_;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if ((alleig || test) && *abstol <= 0.) {
 | 
						|
	dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
 | 
						|
	indee = indrwk + (*n << 1);
 | 
						|
	if (! wantz) {
 | 
						|
	    i__1 = *n - 1;
 | 
						|
	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
 | 
						|
	    dsterf_(n, &w[1], &rwork[indee], info);
 | 
						|
	} else {
 | 
						|
	    zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
 | 
						|
		    work[indwrk], &iinfo);
 | 
						|
	    i__1 = *n - 1;
 | 
						|
	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
 | 
						|
	    zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
 | 
						|
		    rwork[indrwk], info);
 | 
						|
	    if (*info == 0) {
 | 
						|
		i__1 = *n;
 | 
						|
		for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		    ifail[i__] = 0;
 | 
						|
/* L10: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (*info == 0) {
 | 
						|
	    *m = *n;
 | 
						|
	    goto L20;
 | 
						|
	}
 | 
						|
	*info = 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
 | 
						|
 | 
						|
    if (wantz) {
 | 
						|
	*(unsigned char *)order = 'B';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)order = 'E';
 | 
						|
    }
 | 
						|
    indibl = 1;
 | 
						|
    indisp = indibl + *n;
 | 
						|
    indiwk = indisp + *n;
 | 
						|
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
 | 
						|
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
 | 
						|
	    rwork[indrwk], &iwork[indiwk], info);
 | 
						|
 | 
						|
    if (wantz) {
 | 
						|
	zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
 | 
						|
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
 | 
						|
		indiwk], &ifail[1], info);
 | 
						|
 | 
						|
/*        Apply unitary matrix used in reduction to tridiagonal */
 | 
						|
/*        form to eigenvectors returned by ZSTEIN. */
 | 
						|
 | 
						|
	indwrk = indtau + *n;
 | 
						|
	zupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
 | 
						|
		ldz, &work[indwrk], &iinfo);
 | 
						|
    }
 | 
						|
 | 
						|
/*     If matrix was scaled, then rescale eigenvalues appropriately. */
 | 
						|
 | 
						|
L20:
 | 
						|
    if (iscale == 1) {
 | 
						|
	if (*info == 0) {
 | 
						|
	    imax = *m;
 | 
						|
	} else {
 | 
						|
	    imax = *info - 1;
 | 
						|
	}
 | 
						|
	d__1 = 1. / sigma;
 | 
						|
	dscal_(&imax, &d__1, &w[1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     If eigenvalues are not in order, then sort them, along with */
 | 
						|
/*     eigenvectors. */
 | 
						|
 | 
						|
    if (wantz) {
 | 
						|
	i__1 = *m - 1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__ = 0;
 | 
						|
	    tmp1 = w[j];
 | 
						|
	    i__2 = *m;
 | 
						|
	    for (jj = j + 1; jj <= i__2; ++jj) {
 | 
						|
		if (w[jj] < tmp1) {
 | 
						|
		    i__ = jj;
 | 
						|
		    tmp1 = w[jj];
 | 
						|
		}
 | 
						|
/* L30: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (i__ != 0) {
 | 
						|
		itmp1 = iwork[indibl + i__ - 1];
 | 
						|
		w[i__] = w[j];
 | 
						|
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
 | 
						|
		w[j] = tmp1;
 | 
						|
		iwork[indibl + j - 1] = itmp1;
 | 
						|
		zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
 | 
						|
			 &c__1);
 | 
						|
		if (*info != 0) {
 | 
						|
		    itmp1 = ifail[i__];
 | 
						|
		    ifail[i__] = ifail[j];
 | 
						|
		    ifail[j] = itmp1;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZHPEVX */
 | 
						|
 | 
						|
} /* zhpevx_ */
 | 
						|
 |