311 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b STZRZF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download STZRZF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stzrzf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stzrzf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stzrzf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE STZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
 | 
						|
*> to upper triangular form by means of orthogonal transformations.
 | 
						|
*>
 | 
						|
*> The upper trapezoidal matrix A is factored as
 | 
						|
*>
 | 
						|
*>    A = ( R  0 ) * Z,
 | 
						|
*>
 | 
						|
*> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
 | 
						|
*> triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the leading M-by-N upper trapezoidal part of the
 | 
						|
*>          array A must contain the matrix to be factorized.
 | 
						|
*>          On exit, the leading M-by-M upper triangular part of A
 | 
						|
*>          contains the upper triangular matrix R, and elements M+1 to
 | 
						|
*>          N of the first M rows of A, with the array TAU, represent the
 | 
						|
*>          orthogonal matrix Z as a product of M elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (M)
 | 
						|
*>          The scalar factors of the elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,M).
 | 
						|
*>          For optimum performance LWORK >= M*NB, where NB is
 | 
						|
*>          the optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The N-by-N matrix Z can be computed by
 | 
						|
*>
 | 
						|
*>     Z =  Z(1)*Z(2)* ... *Z(M)
 | 
						|
*>
 | 
						|
*>  where each N-by-N Z(k) is given by
 | 
						|
*>
 | 
						|
*>     Z(k) = I - tau(k)*v(k)*v(k)**T
 | 
						|
*>
 | 
						|
*>  with v(k) is the kth row vector of the M-by-N matrix
 | 
						|
*>
 | 
						|
*>     V = ( I   A(:,M+1:N) )
 | 
						|
*>
 | 
						|
*>  I is the M-by-M identity matrix, A(:,M+1:N)
 | 
						|
*>  is the output stored in A on exit from STZRZF,
 | 
						|
*>  and tau(k) is the kth element of the array TAU.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE STZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
 | 
						|
     $                   M1, MU, NB, NBMIN, NX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, SLARZB, SLARZT, SLATRZ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.M ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( M.EQ.0 .OR. M.EQ.N ) THEN
 | 
						|
            LWKOPT = 1
 | 
						|
            LWKMIN = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Determine the block size.
 | 
						|
*
 | 
						|
            NB = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 )
 | 
						|
            LWKOPT = M*NB
 | 
						|
            LWKMIN = MAX( 1, M )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -7
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'STZRZF', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      ELSE IF( M.EQ.N ) THEN
 | 
						|
         DO 10 I = 1, N
 | 
						|
            TAU( I ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NBMIN = 2
 | 
						|
      NX = 1
 | 
						|
      IWS = M
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.M ) THEN
 | 
						|
*
 | 
						|
*        Determine when to cross over from blocked to unblocked code.
 | 
						|
*
 | 
						|
         NX = MAX( 0, ILAENV( 3, 'SGERQF', ' ', M, N, -1, -1 ) )
 | 
						|
         IF( NX.LT.M ) THEN
 | 
						|
*
 | 
						|
*           Determine if workspace is large enough for blocked code.
 | 
						|
*
 | 
						|
            LDWORK = M
 | 
						|
            IWS = LDWORK*NB
 | 
						|
            IF( LWORK.LT.IWS ) THEN
 | 
						|
*
 | 
						|
*              Not enough workspace to use optimal NB:  reduce NB and
 | 
						|
*              determine the minimum value of NB.
 | 
						|
*
 | 
						|
               NB = LWORK / LDWORK
 | 
						|
               NBMIN = MAX( 2, ILAENV( 2, 'SGERQF', ' ', M, N, -1,
 | 
						|
     $                 -1 ) )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
 | 
						|
*
 | 
						|
*        Use blocked code initially.
 | 
						|
*        The last kk rows are handled by the block method.
 | 
						|
*
 | 
						|
         M1 = MIN( M+1, N )
 | 
						|
         KI = ( ( M-NX-1 ) / NB )*NB
 | 
						|
         KK = MIN( M, KI+NB )
 | 
						|
*
 | 
						|
         DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
 | 
						|
            IB = MIN( M-I+1, NB )
 | 
						|
*
 | 
						|
*           Compute the TZ factorization of the current block
 | 
						|
*           A(i:i+ib-1,i:n)
 | 
						|
*
 | 
						|
            CALL SLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
 | 
						|
     $                   WORK )
 | 
						|
            IF( I.GT.1 ) THEN
 | 
						|
*
 | 
						|
*              Form the triangular factor of the block reflector
 | 
						|
*              H = H(i+ib-1) . . . H(i+1) H(i)
 | 
						|
*
 | 
						|
               CALL SLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
 | 
						|
     $                      LDA, TAU( I ), WORK, LDWORK )
 | 
						|
*
 | 
						|
*              Apply H to A(1:i-1,i:n) from the right
 | 
						|
*
 | 
						|
               CALL SLARZB( 'Right', 'No transpose', 'Backward',
 | 
						|
     $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
 | 
						|
     $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
 | 
						|
     $                      WORK( IB+1 ), LDWORK )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
         MU = I + NB - 1
 | 
						|
      ELSE
 | 
						|
         MU = M
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use unblocked code to factor the last or only block
 | 
						|
*
 | 
						|
      IF( MU.GT.0 )
 | 
						|
     $   CALL SLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STZRZF
 | 
						|
*
 | 
						|
      END
 |