393 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			393 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPTRFS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DPTRFS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptrfs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptrfs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptrfs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
 | 
						|
*                          BERR, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | 
						|
*      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPTRFS improves the computed solution to a system of linear
 | 
						|
*> equations when the coefficient matrix is symmetric positive definite
 | 
						|
*> and tridiagonal, and provides error bounds and backward error
 | 
						|
*> estimates for the solution.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the diagonal matrix D from the
 | 
						|
*>          factorization computed by DPTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EF
 | 
						|
*> \verbatim
 | 
						|
*>          EF is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the unit bidiagonal factor
 | 
						|
*>          L from the factorization computed by DPTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          On entry, the solution matrix X, as computed by DPTTRS.
 | 
						|
*>          On exit, the improved solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] FERR
 | 
						|
*> \verbatim
 | 
						|
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The forward error bound for each solution vector
 | 
						|
*>          X(j) (the j-th column of the solution matrix X).
 | 
						|
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | 
						|
*>          is an estimated upper bound for the magnitude of the largest
 | 
						|
*>          element in (X(j) - XTRUE) divided by the magnitude of the
 | 
						|
*>          largest element in X(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BERR
 | 
						|
*> \verbatim
 | 
						|
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The componentwise relative backward error of each solution
 | 
						|
*>          vector X(j) (i.e., the smallest relative change in
 | 
						|
*>          any element of A or B that makes X(j) an exact solution).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  ITMAX is the maximum number of steps of iterative refinement.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doublePTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
 | 
						|
     $                   BERR, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | 
						|
     $                   E( * ), EF( * ), FERR( * ), WORK( * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            ITMAX
 | 
						|
      PARAMETER          ( ITMAX = 5 )
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   TWO
 | 
						|
      PARAMETER          ( TWO = 2.0D+0 )
 | 
						|
      DOUBLE PRECISION   THREE
 | 
						|
      PARAMETER          ( THREE = 3.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            COUNT, I, IX, J, NZ
 | 
						|
      DOUBLE PRECISION   BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2,
 | 
						|
     $                   SAFMIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DPTTRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           IDAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DPTRFS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | 
						|
         DO 10 J = 1, NRHS
 | 
						|
            FERR( J ) = ZERO
 | 
						|
            BERR( J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     NZ = maximum number of nonzero elements in each row of A, plus 1
 | 
						|
*
 | 
						|
      NZ = 4
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      SAFMIN = DLAMCH( 'Safe minimum' )
 | 
						|
      SAFE1 = NZ*SAFMIN
 | 
						|
      SAFE2 = SAFE1 / EPS
 | 
						|
*
 | 
						|
*     Do for each right hand side
 | 
						|
*
 | 
						|
      DO 90 J = 1, NRHS
 | 
						|
*
 | 
						|
         COUNT = 1
 | 
						|
         LSTRES = THREE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Loop until stopping criterion is satisfied.
 | 
						|
*
 | 
						|
*        Compute residual R = B - A * X.  Also compute
 | 
						|
*        abs(A)*abs(x) + abs(b) for use in the backward error bound.
 | 
						|
*
 | 
						|
         IF( N.EQ.1 ) THEN
 | 
						|
            BI = B( 1, J )
 | 
						|
            DX = D( 1 )*X( 1, J )
 | 
						|
            WORK( N+1 ) = BI - DX
 | 
						|
            WORK( 1 ) = ABS( BI ) + ABS( DX )
 | 
						|
         ELSE
 | 
						|
            BI = B( 1, J )
 | 
						|
            DX = D( 1 )*X( 1, J )
 | 
						|
            EX = E( 1 )*X( 2, J )
 | 
						|
            WORK( N+1 ) = BI - DX - EX
 | 
						|
            WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX )
 | 
						|
            DO 30 I = 2, N - 1
 | 
						|
               BI = B( I, J )
 | 
						|
               CX = E( I-1 )*X( I-1, J )
 | 
						|
               DX = D( I )*X( I, J )
 | 
						|
               EX = E( I )*X( I+1, J )
 | 
						|
               WORK( N+I ) = BI - CX - DX - EX
 | 
						|
               WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX )
 | 
						|
   30       CONTINUE
 | 
						|
            BI = B( N, J )
 | 
						|
            CX = E( N-1 )*X( N-1, J )
 | 
						|
            DX = D( N )*X( N, J )
 | 
						|
            WORK( N+N ) = BI - CX - DX
 | 
						|
            WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute componentwise relative backward error from formula
 | 
						|
*
 | 
						|
*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
 | 
						|
*
 | 
						|
*        where abs(Z) is the componentwise absolute value of the matrix
 | 
						|
*        or vector Z.  If the i-th component of the denominator is less
 | 
						|
*        than SAFE2, then SAFE1 is added to the i-th components of the
 | 
						|
*        numerator and denominator before dividing.
 | 
						|
*
 | 
						|
         S = ZERO
 | 
						|
         DO 40 I = 1, N
 | 
						|
            IF( WORK( I ).GT.SAFE2 ) THEN
 | 
						|
               S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
 | 
						|
            ELSE
 | 
						|
               S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
 | 
						|
     $             ( WORK( I )+SAFE1 ) )
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
         BERR( J ) = S
 | 
						|
*
 | 
						|
*        Test stopping criterion. Continue iterating if
 | 
						|
*           1) The residual BERR(J) is larger than machine epsilon, and
 | 
						|
*           2) BERR(J) decreased by at least a factor of 2 during the
 | 
						|
*              last iteration, and
 | 
						|
*           3) At most ITMAX iterations tried.
 | 
						|
*
 | 
						|
         IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | 
						|
     $       COUNT.LE.ITMAX ) THEN
 | 
						|
*
 | 
						|
*           Update solution and try again.
 | 
						|
*
 | 
						|
            CALL DPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO )
 | 
						|
            CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
 | 
						|
            LSTRES = BERR( J )
 | 
						|
            COUNT = COUNT + 1
 | 
						|
            GO TO 20
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Bound error from formula
 | 
						|
*
 | 
						|
*        norm(X - XTRUE) / norm(X) .le. FERR =
 | 
						|
*        norm( abs(inv(A))*
 | 
						|
*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
 | 
						|
*
 | 
						|
*        where
 | 
						|
*          norm(Z) is the magnitude of the largest component of Z
 | 
						|
*          inv(A) is the inverse of A
 | 
						|
*          abs(Z) is the componentwise absolute value of the matrix or
 | 
						|
*             vector Z
 | 
						|
*          NZ is the maximum number of nonzeros in any row of A, plus 1
 | 
						|
*          EPS is machine epsilon
 | 
						|
*
 | 
						|
*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
 | 
						|
*        is incremented by SAFE1 if the i-th component of
 | 
						|
*        abs(A)*abs(X) + abs(B) is less than SAFE2.
 | 
						|
*
 | 
						|
         DO 50 I = 1, N
 | 
						|
            IF( WORK( I ).GT.SAFE2 ) THEN
 | 
						|
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
 | 
						|
            ELSE
 | 
						|
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
         IX = IDAMAX( N, WORK, 1 )
 | 
						|
         FERR( J ) = WORK( IX )
 | 
						|
*
 | 
						|
*        Estimate the norm of inv(A).
 | 
						|
*
 | 
						|
*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
 | 
						|
*
 | 
						|
*           m(i,j) =  abs(A(i,j)), i = j,
 | 
						|
*           m(i,j) = -abs(A(i,j)), i .ne. j,
 | 
						|
*
 | 
						|
*        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**T.
 | 
						|
*
 | 
						|
*        Solve M(L) * x = e.
 | 
						|
*
 | 
						|
         WORK( 1 ) = ONE
 | 
						|
         DO 60 I = 2, N
 | 
						|
            WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) )
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        Solve D * M(L)**T * x = b.
 | 
						|
*
 | 
						|
         WORK( N ) = WORK( N ) / DF( N )
 | 
						|
         DO 70 I = N - 1, 1, -1
 | 
						|
            WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) )
 | 
						|
   70    CONTINUE
 | 
						|
*
 | 
						|
*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
 | 
						|
*
 | 
						|
         IX = IDAMAX( N, WORK, 1 )
 | 
						|
         FERR( J ) = FERR( J )*ABS( WORK( IX ) )
 | 
						|
*
 | 
						|
*        Normalize error.
 | 
						|
*
 | 
						|
         LSTRES = ZERO
 | 
						|
         DO 80 I = 1, N
 | 
						|
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | 
						|
   80    CONTINUE
 | 
						|
         IF( LSTRES.NE.ZERO )
 | 
						|
     $      FERR( J ) = FERR( J ) / LSTRES
 | 
						|
*
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPTRFS
 | 
						|
*
 | 
						|
      END
 |