561 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			561 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLAVHP
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
 | 
						|
*                          INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, TRANS, UPLO
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX*16         A( * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    ZLAVHP  performs one of the matrix-vector operations
 | 
						|
*>       x := A*x  or  x := A^H*x,
 | 
						|
*>    where x is an N element vector and  A is one of the factors
 | 
						|
*>    from the symmetric factorization computed by ZHPTRF.
 | 
						|
*>    ZHPTRF produces a factorization of the form
 | 
						|
*>         U * D * U^H     or     L * D * L^H,
 | 
						|
*>    where U (or L) is a product of permutation and unit upper (lower)
 | 
						|
*>    triangular matrices, U^H (or L^H) is the conjugate transpose of
 | 
						|
*>    U (or L), and D is Hermitian and block diagonal with 1 x 1 and
 | 
						|
*>    2 x 2 diagonal blocks.  The multipliers for the transformations
 | 
						|
*>    and the upper or lower triangular parts of the diagonal blocks
 | 
						|
*>    are stored columnwise in packed format in the linear array A.
 | 
						|
*>
 | 
						|
*>    If TRANS = 'N' or 'n', ZLAVHP multiplies either by U or U * D
 | 
						|
*>    (or L or L * D).
 | 
						|
*>    If TRANS = 'C' or 'c', ZLAVHP multiplies either by U^H or D * U^H
 | 
						|
*>    (or L^H or D * L^H ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \verbatim
 | 
						|
*>  UPLO   - CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the triangular matrix
 | 
						|
*>           stored in A is upper or lower triangular.
 | 
						|
*>              UPLO = 'U' or 'u'   The matrix is upper triangular.
 | 
						|
*>              UPLO = 'L' or 'l'   The matrix is lower triangular.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  TRANS  - CHARACTER*1
 | 
						|
*>           On entry, TRANS specifies the operation to be performed as
 | 
						|
*>           follows:
 | 
						|
*>              TRANS = 'N' or 'n'   x := A*x.
 | 
						|
*>              TRANS = 'C' or 'c'   x := A^H*x.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  DIAG   - CHARACTER*1
 | 
						|
*>           On entry, DIAG specifies whether the diagonal blocks are
 | 
						|
*>           assumed to be unit matrices, as follows:
 | 
						|
*>              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
 | 
						|
*>              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  N      - INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  NRHS   - INTEGER
 | 
						|
*>           On entry, NRHS specifies the number of right hand sides,
 | 
						|
*>           i.e., the number of vectors x to be multiplied by A.
 | 
						|
*>           NRHS must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  A      - COMPLEX*16 array, dimension( N*(N+1)/2 )
 | 
						|
*>           On entry, A contains a block diagonal matrix and the
 | 
						|
*>           multipliers of the transformations used to obtain it,
 | 
						|
*>           stored as a packed triangular matrix.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  IPIV   - INTEGER array, dimension( N )
 | 
						|
*>           On entry, IPIV contains the vector of pivot indices as
 | 
						|
*>           determined by ZSPTRF or ZHPTRF.
 | 
						|
*>           If IPIV( K ) = K, no interchange was done.
 | 
						|
*>           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
 | 
						|
*>           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
 | 
						|
*>           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
 | 
						|
*>           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
 | 
						|
*>           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
 | 
						|
*>           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
 | 
						|
*>
 | 
						|
*>  B      - COMPLEX*16 array, dimension( LDB, NRHS )
 | 
						|
*>           On entry, B contains NRHS vectors of length N.
 | 
						|
*>           On exit, B is overwritten with the product A * B.
 | 
						|
*>
 | 
						|
*>  LDB    - INTEGER
 | 
						|
*>           On entry, LDB contains the leading dimension of B as
 | 
						|
*>           declared in the calling program.  LDB must be at least
 | 
						|
*>           max( 1, N ).
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  INFO   - INTEGER
 | 
						|
*>           INFO is the error flag.
 | 
						|
*>           On exit, a value of 0 indicates a successful exit.
 | 
						|
*>           A negative value, say -K, indicates that the K-th argument
 | 
						|
*>           has an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, TRANS, UPLO
 | 
						|
      INTEGER            INFO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         A( * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOUNIT
 | 
						|
      INTEGER            J, K, KC, KCNEXT, KP
 | 
						|
      COMPLEX*16         D11, D12, D21, D22, T1, T2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMV, ZGERU, ZLACGV, ZSCAL, ZSWAP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DCONJG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZLAVHP ', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
*------------------------------------------
 | 
						|
*
 | 
						|
*     Compute  B := A * B  (No transpose)
 | 
						|
*
 | 
						|
*------------------------------------------
 | 
						|
      IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						|
*
 | 
						|
*        Compute  B := U*B
 | 
						|
*        where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Loop forward applying the transformations.
 | 
						|
*
 | 
						|
            K = 1
 | 
						|
            KC = 1
 | 
						|
   10       CONTINUE
 | 
						|
            IF( K.GT.N )
 | 
						|
     $         GO TO 30
 | 
						|
*
 | 
						|
*           1 x 1 pivot block
 | 
						|
*
 | 
						|
            IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*              Multiply by the diagonal element if forming U * D.
 | 
						|
*
 | 
						|
               IF( NOUNIT )
 | 
						|
     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
 | 
						|
*
 | 
						|
*              Multiply by P(K) * inv(U(K))  if K > 1.
 | 
						|
*
 | 
						|
               IF( K.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                 Apply the transformation.
 | 
						|
*
 | 
						|
                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
 | 
						|
     $                        LDB, B( 1, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = IPIV( K )
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               KC = KC + K
 | 
						|
               K = K + 1
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2 x 2 pivot block
 | 
						|
*
 | 
						|
               KCNEXT = KC + K
 | 
						|
*
 | 
						|
*              Multiply by the diagonal block if forming U * D.
 | 
						|
*
 | 
						|
               IF( NOUNIT ) THEN
 | 
						|
                  D11 = A( KCNEXT-1 )
 | 
						|
                  D22 = A( KCNEXT+K )
 | 
						|
                  D12 = A( KCNEXT+K-1 )
 | 
						|
                  D21 = DCONJG( D12 )
 | 
						|
                  DO 20 J = 1, NRHS
 | 
						|
                     T1 = B( K, J )
 | 
						|
                     T2 = B( K+1, J )
 | 
						|
                     B( K, J ) = D11*T1 + D12*T2
 | 
						|
                     B( K+1, J ) = D21*T1 + D22*T2
 | 
						|
   20             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Multiply by  P(K) * inv(U(K))  if K > 1.
 | 
						|
*
 | 
						|
               IF( K.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                 Apply the transformations.
 | 
						|
*
 | 
						|
                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
 | 
						|
     $                        LDB, B( 1, 1 ), LDB )
 | 
						|
                  CALL ZGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
 | 
						|
     $                        B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = ABS( IPIV( K ) )
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               KC = KCNEXT + K + 1
 | 
						|
               K = K + 2
 | 
						|
            END IF
 | 
						|
            GO TO 10
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
*        Compute  B := L*B
 | 
						|
*        where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Loop backward applying the transformations to B.
 | 
						|
*
 | 
						|
            K = N
 | 
						|
            KC = N*( N+1 ) / 2 + 1
 | 
						|
   40       CONTINUE
 | 
						|
            IF( K.LT.1 )
 | 
						|
     $         GO TO 60
 | 
						|
            KC = KC - ( N-K+1 )
 | 
						|
*
 | 
						|
*           Test the pivot index.  If greater than zero, a 1 x 1
 | 
						|
*           pivot was used, otherwise a 2 x 2 pivot was used.
 | 
						|
*
 | 
						|
            IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*              1 x 1 pivot block:
 | 
						|
*
 | 
						|
*              Multiply by the diagonal element if forming L * D.
 | 
						|
*
 | 
						|
               IF( NOUNIT )
 | 
						|
     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
 | 
						|
*
 | 
						|
*              Multiply by  P(K) * inv(L(K))  if K < N.
 | 
						|
*
 | 
						|
               IF( K.NE.N ) THEN
 | 
						|
                  KP = IPIV( K )
 | 
						|
*
 | 
						|
*                 Apply the transformation.
 | 
						|
*
 | 
						|
                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
 | 
						|
     $                        LDB, B( K+1, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Interchange if a permutation was applied at the
 | 
						|
*                 K-th step of the factorization.
 | 
						|
*
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               K = K - 1
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2 x 2 pivot block:
 | 
						|
*
 | 
						|
               KCNEXT = KC - ( N-K+2 )
 | 
						|
*
 | 
						|
*              Multiply by the diagonal block if forming L * D.
 | 
						|
*
 | 
						|
               IF( NOUNIT ) THEN
 | 
						|
                  D11 = A( KCNEXT )
 | 
						|
                  D22 = A( KC )
 | 
						|
                  D21 = A( KCNEXT+1 )
 | 
						|
                  D12 = DCONJG( D21 )
 | 
						|
                  DO 50 J = 1, NRHS
 | 
						|
                     T1 = B( K-1, J )
 | 
						|
                     T2 = B( K, J )
 | 
						|
                     B( K-1, J ) = D11*T1 + D12*T2
 | 
						|
                     B( K, J ) = D21*T1 + D22*T2
 | 
						|
   50             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Multiply by  P(K) * inv(L(K))  if K < N.
 | 
						|
*
 | 
						|
               IF( K.NE.N ) THEN
 | 
						|
*
 | 
						|
*                 Apply the transformation.
 | 
						|
*
 | 
						|
                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
 | 
						|
     $                        LDB, B( K+1, 1 ), LDB )
 | 
						|
                  CALL ZGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
 | 
						|
     $                        B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Interchange if a permutation was applied at the
 | 
						|
*                 K-th step of the factorization.
 | 
						|
*
 | 
						|
                  KP = ABS( IPIV( K ) )
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               KC = KCNEXT
 | 
						|
               K = K - 2
 | 
						|
            END IF
 | 
						|
            GO TO 40
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
*-------------------------------------------------
 | 
						|
*
 | 
						|
*     Compute  B := A^H * B  (conjugate transpose)
 | 
						|
*
 | 
						|
*-------------------------------------------------
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  B := U^H*B
 | 
						|
*        where U  = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
 | 
						|
*        and   U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*           Loop backward applying the transformations.
 | 
						|
*
 | 
						|
            K = N
 | 
						|
            KC = N*( N+1 ) / 2 + 1
 | 
						|
   70       CONTINUE
 | 
						|
            IF( K.LT.1 )
 | 
						|
     $         GO TO 90
 | 
						|
            KC = KC - K
 | 
						|
*
 | 
						|
*           1 x 1 pivot block.
 | 
						|
*
 | 
						|
            IF( IPIV( K ).GT.0 ) THEN
 | 
						|
               IF( K.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                 Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = IPIV( K )
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Apply the transformation:
 | 
						|
*                    y := y - B' * conjg(x)
 | 
						|
*                 where x is a column of A and y is a row of B.
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
 | 
						|
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               IF( NOUNIT )
 | 
						|
     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
 | 
						|
               K = K - 1
 | 
						|
*
 | 
						|
*           2 x 2 pivot block.
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
               KCNEXT = KC - ( K-1 )
 | 
						|
               IF( K.GT.2 ) THEN
 | 
						|
*
 | 
						|
*                 Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = ABS( IPIV( K ) )
 | 
						|
                  IF( KP.NE.K-1 )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
 | 
						|
     $                           LDB )
 | 
						|
*
 | 
						|
*                 Apply the transformations.
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
 | 
						|
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
 | 
						|
     $                        A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Multiply by the diagonal block if non-unit.
 | 
						|
*
 | 
						|
               IF( NOUNIT ) THEN
 | 
						|
                  D11 = A( KC-1 )
 | 
						|
                  D22 = A( KC+K-1 )
 | 
						|
                  D12 = A( KC+K-2 )
 | 
						|
                  D21 = DCONJG( D12 )
 | 
						|
                  DO 80 J = 1, NRHS
 | 
						|
                     T1 = B( K-1, J )
 | 
						|
                     T2 = B( K, J )
 | 
						|
                     B( K-1, J ) = D11*T1 + D12*T2
 | 
						|
                     B( K, J ) = D21*T1 + D22*T2
 | 
						|
   80             CONTINUE
 | 
						|
               END IF
 | 
						|
               KC = KCNEXT
 | 
						|
               K = K - 2
 | 
						|
            END IF
 | 
						|
            GO TO 70
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
*        Form  B := L^H*B
 | 
						|
*        where L  = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
 | 
						|
*        and   L^H = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Loop forward applying the L-transformations.
 | 
						|
*
 | 
						|
            K = 1
 | 
						|
            KC = 1
 | 
						|
  100       CONTINUE
 | 
						|
            IF( K.GT.N )
 | 
						|
     $         GO TO 120
 | 
						|
*
 | 
						|
*           1 x 1 pivot block
 | 
						|
*
 | 
						|
            IF( IPIV( K ).GT.0 ) THEN
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
*
 | 
						|
*                 Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = IPIV( K )
 | 
						|
                  IF( KP.NE.K )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
*
 | 
						|
*                 Apply the transformation
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
 | 
						|
     $                        LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
               IF( NOUNIT )
 | 
						|
     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
 | 
						|
               KC = KC + N - K + 1
 | 
						|
               K = K + 1
 | 
						|
*
 | 
						|
*           2 x 2 pivot block.
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
               KCNEXT = KC + N - K + 1
 | 
						|
               IF( K.LT.N-1 ) THEN
 | 
						|
*
 | 
						|
*              Interchange if P(K) != I.
 | 
						|
*
 | 
						|
                  KP = ABS( IPIV( K ) )
 | 
						|
                  IF( KP.NE.K+1 )
 | 
						|
     $               CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
 | 
						|
     $                           LDB )
 | 
						|
*
 | 
						|
*                 Apply the transformation
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', N-K-1, NRHS, ONE,
 | 
						|
     $                        B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
 | 
						|
     $                        B( K+1, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
 | 
						|
*
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
                  CALL ZGEMV( 'Conjugate', N-K-1, NRHS, ONE,
 | 
						|
     $                        B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
 | 
						|
     $                        B( K, 1 ), LDB )
 | 
						|
                  CALL ZLACGV( NRHS, B( K, 1 ), LDB )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Multiply by the diagonal block if non-unit.
 | 
						|
*
 | 
						|
               IF( NOUNIT ) THEN
 | 
						|
                  D11 = A( KC )
 | 
						|
                  D22 = A( KCNEXT )
 | 
						|
                  D21 = A( KC+1 )
 | 
						|
                  D12 = DCONJG( D21 )
 | 
						|
                  DO 110 J = 1, NRHS
 | 
						|
                     T1 = B( K, J )
 | 
						|
                     T2 = B( K+1, J )
 | 
						|
                     B( K, J ) = D11*T1 + D12*T2
 | 
						|
                     B( K+1, J ) = D21*T1 + D22*T2
 | 
						|
  110             CONTINUE
 | 
						|
               END IF
 | 
						|
               KC = KCNEXT + ( N-K )
 | 
						|
               K = K + 2
 | 
						|
            END IF
 | 
						|
            GO TO 100
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLAVHP
 | 
						|
*
 | 
						|
      END
 |