245 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGBT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KL, KU, LDA, LDAFAC, M, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGBT01 reconstructs a band matrix  A  from its L*U factorization and
 | 
						|
*> computes the residual:
 | 
						|
*>    norm(L*U - A) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*>
 | 
						|
*> The expression L*U - A is computed one column at a time, so A and
 | 
						|
*> AFAC are not modified.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The original matrix A in band storage, stored in rows 1 to
 | 
						|
*>          KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER.
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is REAL array, dimension (LDAFAC,N)
 | 
						|
*>          The factored form of the matrix A.  AFAC contains the banded
 | 
						|
*>          factors L and U from the L*U factorization, as computed by
 | 
						|
*>          SGBTRF.  U is stored as an upper triangular band matrix with
 | 
						|
*>          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
 | 
						|
*>          multipliers used during the factorization are stored in rows
 | 
						|
*>          KL+KU+2 to 2*KL+KU+1.  See SGBTRF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.
 | 
						|
*>          LDAFAC >= max(1,2*KL*KU+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
*>          The pivot indices from SGBTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*KL+KU+1)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          norm(L*U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KL, KU, LDA, LDAFAC, M, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
 | 
						|
      REAL               ANORM, EPS, T
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SASUM, SLAMCH
 | 
						|
      EXTERNAL           SASUM, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SCOPY
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if M = 0 or N = 0.
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine EPS and the norm of A.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      KD = KU + 1
 | 
						|
      ANORM = ZERO
 | 
						|
      DO 10 J = 1, N
 | 
						|
         I1 = MAX( KD+1-J, 1 )
 | 
						|
         I2 = MIN( KD+M-J, KL+KD )
 | 
						|
         IF( I2.GE.I1 )
 | 
						|
     $      ANORM = MAX( ANORM, SASUM( I2-I1+1, A( I1, J ), 1 ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Compute one column at a time of L*U - A.
 | 
						|
*
 | 
						|
      KD = KL + KU + 1
 | 
						|
      DO 40 J = 1, N
 | 
						|
*
 | 
						|
*        Copy the J-th column of U to WORK.
 | 
						|
*
 | 
						|
         JU = MIN( KL+KU, J-1 )
 | 
						|
         JL = MIN( KL, M-J )
 | 
						|
         LENJ = MIN( M, J ) - J + JU + 1
 | 
						|
         IF( LENJ.GT.0 ) THEN
 | 
						|
            CALL SCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
 | 
						|
            DO 20 I = LENJ + 1, JU + JL + 1
 | 
						|
               WORK( I ) = ZERO
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           Multiply by the unit lower triangular matrix L.  Note that L
 | 
						|
*           is stored as a product of transformations and permutations.
 | 
						|
*
 | 
						|
            DO 30 I = MIN( M-1, J ), J - JU, -1
 | 
						|
               IL = MIN( KL, M-I )
 | 
						|
               IF( IL.GT.0 ) THEN
 | 
						|
                  IW = I - J + JU + 1
 | 
						|
                  T = WORK( IW )
 | 
						|
                  CALL SAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
 | 
						|
     $                        1 )
 | 
						|
                  IP = IPIV( I )
 | 
						|
                  IF( I.NE.IP ) THEN
 | 
						|
                     IP = IP - J + JU + 1
 | 
						|
                     WORK( IW ) = WORK( IP )
 | 
						|
                     WORK( IP ) = T
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
*           Subtract the corresponding column of A.
 | 
						|
*
 | 
						|
            JUA = MIN( JU, KU )
 | 
						|
            IF( JUA+JL+1.GT.0 )
 | 
						|
     $         CALL SAXPY( JUA+JL+1, -ONE, A( KU+1-JUA, J ), 1,
 | 
						|
     $                     WORK( JU+1-JUA ), 1 )
 | 
						|
*
 | 
						|
*           Compute the 1-norm of the column.
 | 
						|
*
 | 
						|
            RESID = MAX( RESID, SASUM( JU+JL+1, WORK, 1 ) )
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGBT01
 | 
						|
*
 | 
						|
      END
 |