191 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTPT06
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, UPLO
 | 
						|
*       INTEGER            N
 | 
						|
*       REAL               RAT, RCOND, RCONDC
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            AP( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTPT06 computes a test ratio comparing RCOND (the reciprocal
 | 
						|
*> condition number of the triangular matrix A) and RCONDC, the estimate
 | 
						|
*> computed by CTPCON.  Information about the triangular matrix is used
 | 
						|
*> if one estimate is zero and the other is non-zero to decide if
 | 
						|
*> underflow in the estimate is justified.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The estimate of the reciprocal condition number obtained by
 | 
						|
*>          forming the explicit inverse of the matrix A and computing
 | 
						|
*>          RCOND = 1/( norm(A) * norm(inv(A)) ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCONDC
 | 
						|
*> \verbatim
 | 
						|
*>          RCONDC is REAL
 | 
						|
*>          The estimate of the reciprocal condition number computed by
 | 
						|
*>          CTPCON.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangular matrix A, packed columnwise in
 | 
						|
*>          a linear array.  The j-th column of A is stored in the array
 | 
						|
*>          AP as follows:
 | 
						|
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L',
 | 
						|
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RAT
 | 
						|
*> \verbatim
 | 
						|
*>          RAT is REAL
 | 
						|
*>          The test ratio.  If both RCOND and RCONDC are nonzero,
 | 
						|
*>             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1.
 | 
						|
*>          If RAT = 0, the two estimates are exactly the same.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, UPLO
 | 
						|
      INTEGER            N
 | 
						|
      REAL               RAT, RCOND, RCONDC
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            AP( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               ANORM, BIGNUM, EPS, RMAX, RMIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANTP, SLAMCH
 | 
						|
      EXTERNAL           CLANTP, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      RMAX = MAX( RCOND, RCONDC )
 | 
						|
      RMIN = MIN( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*     Do the easy cases first.
 | 
						|
*
 | 
						|
      IF( RMIN.LT.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Invalid value for RCOND or RCONDC, return 1/EPS.
 | 
						|
*
 | 
						|
         RAT = ONE / EPS
 | 
						|
*
 | 
						|
      ELSE IF( RMIN.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Both estimates are positive, return RMAX/RMIN - 1.
 | 
						|
*
 | 
						|
         RAT = RMAX / RMIN - ONE
 | 
						|
*
 | 
						|
      ELSE IF( RMAX.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Both estimates zero.
 | 
						|
*
 | 
						|
         RAT = ZERO
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        One estimate is zero, the other is non-zero.  If the matrix is
 | 
						|
*        ill-conditioned, return the nonzero estimate multiplied by
 | 
						|
*        1/EPS; if the matrix is badly scaled, return the nonzero
 | 
						|
*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum
 | 
						|
*        element in absolute value in A.
 | 
						|
*
 | 
						|
         BIGNUM = ONE / SLAMCH( 'Safe minimum' )
 | 
						|
         ANORM = CLANTP( 'M', UPLO, DIAG, N, AP, RWORK )
 | 
						|
*
 | 
						|
         RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTPT06
 | 
						|
*
 | 
						|
      END
 |