683 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			683 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTGSYL
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DTGSYL + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsyl.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsyl.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsyl.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
*                          LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | 
						|
*      $                   LWORK, M, N
 | 
						|
*       DOUBLE PRECISION   DIF, SCALE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTGSYL solves the generalized Sylvester equation:
 | 
						|
*>
 | 
						|
*>             A * R - L * B = scale * C                 (1)
 | 
						|
*>             D * R - L * E = scale * F
 | 
						|
*>
 | 
						|
*> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
 | 
						|
*> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
 | 
						|
*> respectively, with real entries. (A, D) and (B, E) must be in
 | 
						|
*> generalized (real) Schur canonical form, i.e. A, B are upper quasi
 | 
						|
*> triangular and D, E are upper triangular.
 | 
						|
*>
 | 
						|
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
 | 
						|
*> scaling factor chosen to avoid overflow.
 | 
						|
*>
 | 
						|
*> In matrix notation (1) is equivalent to solve  Zx = scale b, where
 | 
						|
*> Z is defined as
 | 
						|
*>
 | 
						|
*>            Z = [ kron(In, A)  -kron(B**T, Im) ]         (2)
 | 
						|
*>                [ kron(In, D)  -kron(E**T, Im) ].
 | 
						|
*>
 | 
						|
*> Here Ik is the identity matrix of size k and X**T is the transpose of
 | 
						|
*> X. kron(X, Y) is the Kronecker product between the matrices X and Y.
 | 
						|
*>
 | 
						|
*> If TRANS = 'T', DTGSYL solves the transposed system Z**T*y = scale*b,
 | 
						|
*> which is equivalent to solve for R and L in
 | 
						|
*>
 | 
						|
*>             A**T * R + D**T * L = scale * C           (3)
 | 
						|
*>             R * B**T + L * E**T = scale * -F
 | 
						|
*>
 | 
						|
*> This case (TRANS = 'T') is used to compute an one-norm-based estimate
 | 
						|
*> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
 | 
						|
*> and (B,E), using DLACON.
 | 
						|
*>
 | 
						|
*> If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
 | 
						|
*> of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
 | 
						|
*> reciprocal of the smallest singular value of Z. See [1-2] for more
 | 
						|
*> information.
 | 
						|
*>
 | 
						|
*> This is a level 3 BLAS algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N', solve the generalized Sylvester equation (1).
 | 
						|
*>          = 'T', solve the 'transposed' system (3).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IJOB
 | 
						|
*> \verbatim
 | 
						|
*>          IJOB is INTEGER
 | 
						|
*>          Specifies what kind of functionality to be performed.
 | 
						|
*>           =0: solve (1) only.
 | 
						|
*>           =1: The functionality of 0 and 3.
 | 
						|
*>           =2: The functionality of 0 and 4.
 | 
						|
*>           =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | 
						|
*>               (look ahead strategy IJOB  = 1 is used).
 | 
						|
*>           =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | 
						|
*>               ( DGECON on sub-systems is used ).
 | 
						|
*>          Not referenced if TRANS = 'T'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The order of the matrices A and D, and the row dimension of
 | 
						|
*>          the matrices C, F, R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices B and E, and the column dimension
 | 
						|
*>          of the matrices C, F, R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, M)
 | 
						|
*>          The upper quasi triangular matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | 
						|
*>          The upper quasi triangular matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (LDC, N)
 | 
						|
*>          On entry, C contains the right-hand-side of the first matrix
 | 
						|
*>          equation in (1) or (3).
 | 
						|
*>          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
 | 
						|
*>          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
 | 
						|
*>          the solution achieved during the computation of the
 | 
						|
*>          Dif-estimate.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (LDD, M)
 | 
						|
*>          The upper triangular matrix D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDD
 | 
						|
*> \verbatim
 | 
						|
*>          LDD is INTEGER
 | 
						|
*>          The leading dimension of the array D. LDD >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (LDE, N)
 | 
						|
*>          The upper triangular matrix E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of the array E. LDE >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is DOUBLE PRECISION array, dimension (LDF, N)
 | 
						|
*>          On entry, F contains the right-hand-side of the second matrix
 | 
						|
*>          equation in (1) or (3).
 | 
						|
*>          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
 | 
						|
*>          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
 | 
						|
*>          the solution achieved during the computation of the
 | 
						|
*>          Dif-estimate.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDF
 | 
						|
*> \verbatim
 | 
						|
*>          LDF is INTEGER
 | 
						|
*>          The leading dimension of the array F. LDF >= max(1, M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIF
 | 
						|
*> \verbatim
 | 
						|
*>          DIF is DOUBLE PRECISION
 | 
						|
*>          On exit DIF is the reciprocal of a lower bound of the
 | 
						|
*>          reciprocal of the Dif-function, i.e. DIF is an upper bound of
 | 
						|
*>          Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
 | 
						|
*>          IF IJOB = 0 or TRANS = 'T', DIF is not touched.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION
 | 
						|
*>          On exit SCALE is the scaling factor in (1) or (3).
 | 
						|
*>          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
 | 
						|
*>          to a slightly perturbed system but the input matrices A, B, D
 | 
						|
*>          and E have not been changed. If SCALE = 0, C and F hold the
 | 
						|
*>          solutions R and L, respectively, to the homogeneous system
 | 
						|
*>          with C = F = 0. Normally, SCALE = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK > = 1.
 | 
						|
*>          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (M+N+6)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>            =0: successful exit
 | 
						|
*>            <0: If INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>            >0: (A, D) and (B, E) have common or close eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleSYcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | 
						|
*>      for Solving the Generalized Sylvester Equation and Estimating the
 | 
						|
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | 
						|
*>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
 | 
						|
*>      No 1, 1996.
 | 
						|
*>
 | 
						|
*>  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
 | 
						|
*>      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
 | 
						|
*>      Appl., 15(4):1045-1060, 1994
 | 
						|
*>
 | 
						|
*>  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
 | 
						|
*>      Condition Estimators for Solving the Generalized Sylvester
 | 
						|
*>      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
 | 
						|
*>      July 1989, pp 745-751.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
     $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | 
						|
     $                   LWORK, M, N
 | 
						|
      DOUBLE PRECISION   DIF, SCALE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*  Replaced various illegal calls to DCOPY by calls to DLASET.
 | 
						|
*  Sven Hammarling, 1/5/02.
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, NOTRAN
 | 
						|
      INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
 | 
						|
     $                   LINFO, LWMIN, MB, NB, P, PPQQ, PQ, Q
 | 
						|
      DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLACPY, DLASET, DSCAL, DTGSY2, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NOTRAN ) THEN
 | 
						|
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
 | 
						|
            INFO = -2
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( M.LE.0 ) THEN
 | 
						|
            INFO = -3
 | 
						|
         ELSE IF( N.LE.0 ) THEN
 | 
						|
            INFO = -4
 | 
						|
         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -6
 | 
						|
         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
            INFO = -8
 | 
						|
         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -10
 | 
						|
         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -12
 | 
						|
         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
 | 
						|
            INFO = -14
 | 
						|
         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
 | 
						|
            INFO = -16
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
 | 
						|
               LWMIN = MAX( 1, 2*M*N )
 | 
						|
            ELSE
 | 
						|
               LWMIN = 1
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            LWMIN = 1
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -20
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DTGSYL', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | 
						|
         SCALE = 1
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            IF( IJOB.NE.0 ) THEN
 | 
						|
               DIF = 0
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine optimal block sizes MB and NB
 | 
						|
*
 | 
						|
      MB = ILAENV( 2, 'DTGSYL', TRANS, M, N, -1, -1 )
 | 
						|
      NB = ILAENV( 5, 'DTGSYL', TRANS, M, N, -1, -1 )
 | 
						|
*
 | 
						|
      ISOLVE = 1
 | 
						|
      IFUNC = 0
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
         IF( IJOB.GE.3 ) THEN
 | 
						|
            IFUNC = IJOB - 2
 | 
						|
            CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
 | 
						|
            CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
 | 
						|
         ELSE IF( IJOB.GE.1 ) THEN
 | 
						|
            ISOLVE = 2
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
 | 
						|
     $     THEN
 | 
						|
*
 | 
						|
         DO 30 IROUND = 1, ISOLVE
 | 
						|
*
 | 
						|
*           Use unblocked Level 2 solver
 | 
						|
*
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            PQ = 0
 | 
						|
            CALL DTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
 | 
						|
     $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
 | 
						|
     $                   IWORK, PQ, INFO )
 | 
						|
            IF( DSCALE.NE.ZERO ) THEN
 | 
						|
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | 
						|
                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               ELSE
 | 
						|
                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | 
						|
               IF( NOTRAN ) THEN
 | 
						|
                  IFUNC = IJOB
 | 
						|
               END IF
 | 
						|
               SCALE2 = SCALE
 | 
						|
               CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
 | 
						|
               CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | 
						|
               CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
 | 
						|
               CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
 | 
						|
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | 
						|
               CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
 | 
						|
               CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | 
						|
               SCALE = SCALE2
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine block structure of A
 | 
						|
*
 | 
						|
      P = 0
 | 
						|
      I = 1
 | 
						|
   40 CONTINUE
 | 
						|
      IF( I.GT.M )
 | 
						|
     $   GO TO 50
 | 
						|
      P = P + 1
 | 
						|
      IWORK( P ) = I
 | 
						|
      I = I + MB
 | 
						|
      IF( I.GE.M )
 | 
						|
     $   GO TO 50
 | 
						|
      IF( A( I, I-1 ).NE.ZERO )
 | 
						|
     $   I = I + 1
 | 
						|
      GO TO 40
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      IWORK( P+1 ) = M + 1
 | 
						|
      IF( IWORK( P ).EQ.IWORK( P+1 ) )
 | 
						|
     $   P = P - 1
 | 
						|
*
 | 
						|
*     Determine block structure of B
 | 
						|
*
 | 
						|
      Q = P + 1
 | 
						|
      J = 1
 | 
						|
   60 CONTINUE
 | 
						|
      IF( J.GT.N )
 | 
						|
     $   GO TO 70
 | 
						|
      Q = Q + 1
 | 
						|
      IWORK( Q ) = J
 | 
						|
      J = J + NB
 | 
						|
      IF( J.GE.N )
 | 
						|
     $   GO TO 70
 | 
						|
      IF( B( J, J-1 ).NE.ZERO )
 | 
						|
     $   J = J + 1
 | 
						|
      GO TO 60
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      IWORK( Q+1 ) = N + 1
 | 
						|
      IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
 | 
						|
     $   Q = Q - 1
 | 
						|
*
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
*
 | 
						|
         DO 150 IROUND = 1, ISOLVE
 | 
						|
*
 | 
						|
*           Solve (I, J)-subsystem
 | 
						|
*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
 | 
						|
*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
 | 
						|
*           for I = P, P - 1,..., 1; J = 1, 2,..., Q
 | 
						|
*
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            PQ = 0
 | 
						|
            SCALE = ONE
 | 
						|
            DO 130 J = P + 2, Q
 | 
						|
               JS = IWORK( J )
 | 
						|
               JE = IWORK( J+1 ) - 1
 | 
						|
               NB = JE - JS + 1
 | 
						|
               DO 120 I = P, 1, -1
 | 
						|
                  IS = IWORK( I )
 | 
						|
                  IE = IWORK( I+1 ) - 1
 | 
						|
                  MB = IE - IS + 1
 | 
						|
                  PPQQ = 0
 | 
						|
                  CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | 
						|
     $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
 | 
						|
     $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
 | 
						|
     $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | 
						|
     $                         IWORK( Q+2 ), PPQQ, LINFO )
 | 
						|
                  IF( LINFO.GT.0 )
 | 
						|
     $               INFO = LINFO
 | 
						|
*
 | 
						|
                  PQ = PQ + PPQQ
 | 
						|
                  IF( SCALOC.NE.ONE ) THEN
 | 
						|
                     DO 80 K = 1, JS - 1
 | 
						|
                        CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
 | 
						|
                        CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
 | 
						|
   80                CONTINUE
 | 
						|
                     DO 90 K = JS, JE
 | 
						|
                        CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
 | 
						|
                        CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
 | 
						|
   90                CONTINUE
 | 
						|
                     DO 100 K = JS, JE
 | 
						|
                        CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
 | 
						|
                        CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
 | 
						|
  100                CONTINUE
 | 
						|
                     DO 110 K = JE + 1, N
 | 
						|
                        CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
 | 
						|
                        CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
 | 
						|
  110                CONTINUE
 | 
						|
                     SCALE = SCALE*SCALOC
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Substitute R(I, J) and L(I, J) into remaining
 | 
						|
*                 equation.
 | 
						|
*
 | 
						|
                  IF( I.GT.1 ) THEN
 | 
						|
                     CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
 | 
						|
     $                           A( 1, IS ), LDA, C( IS, JS ), LDC, ONE,
 | 
						|
     $                           C( 1, JS ), LDC )
 | 
						|
                     CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
 | 
						|
     $                           D( 1, IS ), LDD, C( IS, JS ), LDC, ONE,
 | 
						|
     $                           F( 1, JS ), LDF )
 | 
						|
                  END IF
 | 
						|
                  IF( J.LT.Q ) THEN
 | 
						|
                     CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
 | 
						|
     $                           F( IS, JS ), LDF, B( JS, JE+1 ), LDB,
 | 
						|
     $                           ONE, C( IS, JE+1 ), LDC )
 | 
						|
                     CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
 | 
						|
     $                           F( IS, JS ), LDF, E( JS, JE+1 ), LDE,
 | 
						|
     $                           ONE, F( IS, JE+1 ), LDF )
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
  130       CONTINUE
 | 
						|
            IF( DSCALE.NE.ZERO ) THEN
 | 
						|
               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | 
						|
                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               ELSE
 | 
						|
                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | 
						|
               IF( NOTRAN ) THEN
 | 
						|
                  IFUNC = IJOB
 | 
						|
               END IF
 | 
						|
               SCALE2 = SCALE
 | 
						|
               CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
 | 
						|
               CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | 
						|
               CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
 | 
						|
               CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
 | 
						|
            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | 
						|
               CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
 | 
						|
               CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | 
						|
               SCALE = SCALE2
 | 
						|
            END IF
 | 
						|
  150    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve transposed (I, J)-subsystem
 | 
						|
*             A(I, I)**T * R(I, J)  + D(I, I)**T * L(I, J)  =  C(I, J)
 | 
						|
*             R(I, J)  * B(J, J)**T + L(I, J)  * E(J, J)**T = -F(I, J)
 | 
						|
*        for I = 1,2,..., P; J = Q, Q-1,..., 1
 | 
						|
*
 | 
						|
         SCALE = ONE
 | 
						|
         DO 210 I = 1, P
 | 
						|
            IS = IWORK( I )
 | 
						|
            IE = IWORK( I+1 ) - 1
 | 
						|
            MB = IE - IS + 1
 | 
						|
            DO 200 J = Q, P + 2, -1
 | 
						|
               JS = IWORK( J )
 | 
						|
               JE = IWORK( J+1 ) - 1
 | 
						|
               NB = JE - JS + 1
 | 
						|
               CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | 
						|
     $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
 | 
						|
     $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
 | 
						|
     $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | 
						|
     $                      IWORK( Q+2 ), PPQQ, LINFO )
 | 
						|
               IF( LINFO.GT.0 )
 | 
						|
     $            INFO = LINFO
 | 
						|
               IF( SCALOC.NE.ONE ) THEN
 | 
						|
                  DO 160 K = 1, JS - 1
 | 
						|
                     CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
 | 
						|
                     CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
 | 
						|
  160             CONTINUE
 | 
						|
                  DO 170 K = JS, JE
 | 
						|
                     CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
 | 
						|
                     CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
 | 
						|
  170             CONTINUE
 | 
						|
                  DO 180 K = JS, JE
 | 
						|
                     CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
 | 
						|
                     CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
 | 
						|
  180             CONTINUE
 | 
						|
                  DO 190 K = JE + 1, N
 | 
						|
                     CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
 | 
						|
                     CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
 | 
						|
  190             CONTINUE
 | 
						|
                  SCALE = SCALE*SCALOC
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Substitute R(I, J) and L(I, J) into remaining equation.
 | 
						|
*
 | 
						|
               IF( J.GT.P+2 ) THEN
 | 
						|
                  CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, C( IS, JS ),
 | 
						|
     $                        LDC, B( 1, JS ), LDB, ONE, F( IS, 1 ),
 | 
						|
     $                        LDF )
 | 
						|
                  CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, F( IS, JS ),
 | 
						|
     $                        LDF, E( 1, JS ), LDE, ONE, F( IS, 1 ),
 | 
						|
     $                        LDF )
 | 
						|
               END IF
 | 
						|
               IF( I.LT.P ) THEN
 | 
						|
                  CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
 | 
						|
     $                        A( IS, IE+1 ), LDA, C( IS, JS ), LDC, ONE,
 | 
						|
     $                        C( IE+1, JS ), LDC )
 | 
						|
                  CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
 | 
						|
     $                        D( IS, IE+1 ), LDD, F( IS, JS ), LDF, ONE,
 | 
						|
     $                        C( IE+1, JS ), LDC )
 | 
						|
               END IF
 | 
						|
  200       CONTINUE
 | 
						|
  210    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTGSYL
 | 
						|
*
 | 
						|
      END
 |