187 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLANST + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM
 | 
						|
*       INTEGER            N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLANST  returns the value of the one norm,  or the Frobenius norm, or
 | 
						|
*> the  infinity norm,  or the  element of  largest absolute value  of a
 | 
						|
*> real symmetric tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return DLANST
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in DLANST as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
 | 
						|
*>          set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) sub-diagonal or super-diagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM
 | 
						|
      INTEGER            N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      DOUBLE PRECISION   ANORM, SCALE, SUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      EXTERNAL           LSAME, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         ANORM = ZERO
 | 
						|
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*        Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         ANORM = ABS( D( N ) )
 | 
						|
         DO 10 I = 1, N - 1
 | 
						|
            SUM = ABS( D( I ) )
 | 
						|
            IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | 
						|
            SUM = ABS( E( I ) )
 | 
						|
            IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
 | 
						|
     $         LSAME( NORM, 'I' ) ) THEN
 | 
						|
*
 | 
						|
*        Find norm1(A).
 | 
						|
*
 | 
						|
         IF( N.EQ.1 ) THEN
 | 
						|
            ANORM = ABS( D( 1 ) )
 | 
						|
         ELSE
 | 
						|
            ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
 | 
						|
            SUM = ABS( E( N-1 ) )+ABS( D( N ) )
 | 
						|
            IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | 
						|
            DO 20 I = 2, N - 1
 | 
						|
               SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
 | 
						|
               IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*        Find normF(A).
 | 
						|
*
 | 
						|
         SCALE = ZERO
 | 
						|
         SUM = ONE
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
 | 
						|
            SUM = 2*SUM
 | 
						|
         END IF
 | 
						|
         CALL DLASSQ( N, D, 1, SCALE, SUM )
 | 
						|
         ANORM = SCALE*SQRT( SUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DLANST = ANORM
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLANST
 | 
						|
*
 | 
						|
      END
 |