OpenBLAS/kernel/riscv64/trsm_kernel_LT_rvv_v1.c

329 lines
9.0 KiB
C

/***************************************************************************
Copyright (c) 2022, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include "common.h"
#if !defined(DOUBLE)
#define VSETVL(n) __riscv_vsetvl_e32m2(n)
#define VSETVL_MAX __riscv_vsetvlmax_e32m2()
#define FLOAT_V_T vfloat32m2_t
#define VLSEV_FLOAT __riscv_vlse32_v_f32m2
#define VSSEV_FLOAT __riscv_vsse32_v_f32m2
#define VSEV_FLOAT __riscv_vse32_v_f32m2
#define VLSEG2_FLOAT __riscv_vlseg2e32_v_f32m2
#define VSSEG2_FLOAT __riscv_vsseg2e32_v_f32m2
#define VLSSEG2_FLOAT __riscv_vlsseg2e32_v_f32m2
#define VSSSEG2_FLOAT __riscv_vssseg2e32_v_f32m2
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m2
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m2
#define VFMULVF_FLOAT __riscv_vfmul_vf_f32m2
#else
#define VSETVL(n) __riscv_vsetvl_e64m2(n)
#define VSETVL_MAX __riscv_vsetvlmax_e64m2()
#define FLOAT_V_T vfloat64m2_t
#define VLSEV_FLOAT __riscv_vlse64_v_f64m2
#define VSSEV_FLOAT __riscv_vsse64_v_f64m2
#define VSEV_FLOAT __riscv_vse64_v_f64m2
#define VLSEG2_FLOAT __riscv_vlseg2e64_v_f64m2
#define VSSEG2_FLOAT __riscv_vsseg2e64_v_f64m2
#define VLSSEG2_FLOAT __riscv_vlsseg2e64_v_f64m2
#define VSSSEG2_FLOAT __riscv_vssseg2e64_v_f64m2
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m2
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m2
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m2
#define VFMULVF_FLOAT __riscv_vfmul_vf_f64m2
#endif
static FLOAT dm1 = -1.;
#ifdef CONJ
#define GEMM_KERNEL GEMM_KERNEL_L
#else
#define GEMM_KERNEL GEMM_KERNEL_N
#endif
#if GEMM_DEFAULT_UNROLL_N == 1
#define GEMM_UNROLL_N_SHIFT 0
#endif
#if GEMM_DEFAULT_UNROLL_N == 2
#define GEMM_UNROLL_N_SHIFT 1
#endif
#if GEMM_DEFAULT_UNROLL_N == 4
#define GEMM_UNROLL_N_SHIFT 2
#endif
#if GEMM_DEFAULT_UNROLL_N == 8
#define GEMM_UNROLL_N_SHIFT 3
#endif
#if GEMM_DEFAULT_UNROLL_N == 16
#define GEMM_UNROLL_N_SHIFT 4
#endif
// Optimizes the implementation in ../arm64/trsm_kernel_LT_sve.c
#ifndef COMPLEX
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
FLOAT aa;
FLOAT* pc;
int i, j, k;
BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
FLOAT_V_T vb, vc;
size_t vl;
for (i = 0; i < m; i++) {
aa = *(a + i);
pc = c;
for (j = n; j > 0; j -= vl) {
vl = VSETVL(j);
vb = VLSEV_FLOAT(pc + i, stride_ldc, vl);
vb = VFMULVF_FLOAT(vb, aa, vl);
VSEV_FLOAT(b, vb, vl);
VSSEV_FLOAT(pc + i, stride_ldc, vb, vl);
b += vl;
for (k = i + 1; k < m; k++) {
vc = VLSEV_FLOAT(pc + k, stride_ldc, vl);
vc = VFNMSACVF_FLOAT(vc, *(a + k), vb, vl);
VSSEV_FLOAT(pc + k, stride_ldc, vc, vl);
}
pc += vl * ldc;
}
a += m;
}
}
#else
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
FLOAT aa1, aa2;
FLOAT *pc;
int i, j, k;
BLASLONG stride_ldc = sizeof(FLOAT) * ldc * 2;
FLOAT_V_T vb1, vb2, vc1, vc2, vs1, vs2;
size_t vl;
ldc *= 2;
for (i = 0; i < m; i++) {
aa1 = *(a + i * 2 + 0);
aa2 = *(a + i * 2 + 1);
pc = c;
for (j = n; j > 0; j -= vl) {
vl = VSETVL(j);
VLSSEG2_FLOAT(&vb1, &vb2, pc + i * 2, stride_ldc, vl);
#ifndef CONJ
vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
vs1 = VFNMSACVF_FLOAT(vs1, aa2, vb2, vl);
vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
vs2 = VFMACCVF_FLOAT(vs2, aa2, vb1, vl);
#else
vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
vs1 = VFMACCVF_FLOAT(vs1, aa2, vb2, vl);
vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
vs2 = VFNMSACVF_FLOAT(vs2, aa2, vb1, vl);
#endif
VSSEG2_FLOAT(b, vs1, vs2, vl);
VSSSEG2_FLOAT(pc + i * 2, stride_ldc, vs1, vs2, vl);
b += vl * 2;
for (k = i + 1; k < m; k++) {
VLSSEG2_FLOAT(&vc1, &vc2, pc + k * 2, stride_ldc, vl);
#ifndef CONJ
vc1 = VFMACCVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
#else
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
vc2 = VFMACCVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
#endif
VSSSEG2_FLOAT(pc + k * 2, stride_ldc, vc1, vc2, vl);
}
pc += vl * ldc * 2;
}
a += m * 2;
}
}
#endif
int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
#ifdef COMPLEX
FLOAT dummy2,
#endif
FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
FLOAT *aa, *cc;
BLASLONG kk;
BLASLONG i, j;
size_t vl = VSETVL_MAX;
//fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
j = (n >> GEMM_UNROLL_N_SHIFT);
while (j > 0) {
kk = offset;
aa = a;
cc = c;
i = vl;
while (i <= m) {
if (kk > 0) {
GEMM_KERNEL(vl, GEMM_UNROLL_N, kk, dm1,
#ifdef COMPLEX
ZERO,
#endif
aa, b, cc, ldc);
}
solve(vl, GEMM_UNROLL_N,
aa + kk * vl * COMPSIZE,
b + kk * GEMM_UNROLL_N * COMPSIZE,
cc, ldc);
aa += vl * k * COMPSIZE;
cc += vl * COMPSIZE;
kk += vl;
i += vl;
}
i = m % vl;
if (i) {
if (kk > 0) {
GEMM_KERNEL(i, GEMM_UNROLL_N, kk, dm1,
#ifdef COMPLEX
ZERO,
#endif
aa, b, cc, ldc);
}
solve(i, GEMM_UNROLL_N,
aa + kk * i * COMPSIZE,
b + kk * GEMM_UNROLL_N * COMPSIZE,
cc, ldc);
aa += i * k * COMPSIZE;
cc += i * COMPSIZE;
kk += i;
}
b += GEMM_UNROLL_N * k * COMPSIZE;
c += GEMM_UNROLL_N * ldc * COMPSIZE;
j --;
}
if (n & (GEMM_UNROLL_N - 1)) {
j = (GEMM_UNROLL_N >> 1);
while (j > 0) {
if (n & j) {
kk = offset;
aa = a;
cc = c;
i = vl;
while (i <= m) {
if (kk > 0) {
GEMM_KERNEL(vl, j, kk, dm1,
#ifdef COMPLEX
ZERO,
#endif
aa,
b,
cc,
ldc);
}
solve(vl, j,
aa + kk * vl * COMPSIZE,
b + kk * j * COMPSIZE, cc, ldc);
aa += vl * k * COMPSIZE;
cc += vl * COMPSIZE;
kk += vl;
i += vl;
}
i = m % vl;
if (i) {
if (kk > 0) {
GEMM_KERNEL(i, j, kk, dm1,
#ifdef COMPLEX
ZERO,
#endif
aa,
b,
cc,
ldc);
}
solve(i, j,
aa + kk * i * COMPSIZE,
b + kk * j * COMPSIZE, cc, ldc);
aa += i * k * COMPSIZE;
cc += i * COMPSIZE;
kk += i;
}
b += j * k * COMPSIZE;
c += j * ldc * COMPSIZE;
}
j >>= 1;
}
}
return 0;
}