359 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE ZTRMVF ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX, LDA, N
 | |
|       CHARACTER*1        DIAG, TRANS, UPLO
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  ZTRMV  performs one of the matrix-vector operations
 | |
| *
 | |
| *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
 | |
| *
 | |
| *  where x is an n element vector and  A is an n by n unit, or non-unit,
 | |
| *  upper or lower triangular matrix.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *           lower triangular matrix as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   x := A*x.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   x := A'*x.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   x := conjg( A' )*x.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  DIAG   - CHARACTER*1.
 | |
| *           On entry, DIAG specifies whether or not A is unit
 | |
| *           triangular as follows:
 | |
| *
 | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *
 | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *                                  triangular.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 | |
| *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *           upper triangular part of the array A must contain the upper
 | |
| *           triangular matrix and the strictly lower triangular part of
 | |
| *           A is not referenced.
 | |
| *           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *           lower triangular part of the array A must contain the lower
 | |
| *           triangular matrix and the strictly upper triangular part of
 | |
| *           A is not referenced.
 | |
| *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | |
| *           A are not referenced either, but are assumed to be unity.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - COMPLEX*16       array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element vector x. On exit, X is overwritten with the
 | |
| *           tranformed vector x.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16         TEMP
 | |
|       INTEGER            I, INFO, IX, J, JX, KX
 | |
|       LOGICAL            NOCONJ, NOUNIT
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO , 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'R' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
 | |
|      $         .NOT.LSAME( DIAG , 'N' )      )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'ZTRMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|       NOUNIT = LSAME( DIAG , 'N' )
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX  too small for descending loops.
 | |
| *
 | |
|       IF( INCX.LE.0 )THEN
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       ELSE IF( INCX.NE.1 )THEN
 | |
|          KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through A.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' ))THEN
 | |
| *
 | |
| *        Form  x := A*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 20, J = 1, N
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      TEMP = X( J )
 | |
|                      DO 10, I = 1, J - 1
 | |
|                         IF (NOCONJ) THEN
 | |
|                            X( I ) = X( I ) + TEMP*A( I, J )
 | |
|                         ELSE
 | |
|                            X( I ) = X( I ) + TEMP*DCONJG(A( I, J ))
 | |
|                         ENDIF
 | |
|    10                CONTINUE
 | |
|                      IF (NOCONJ) THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*A( J, J )
 | |
|                      ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*DCONJG(A( J, J ))
 | |
|                      ENDIF
 | |
|                   END IF
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 40, J = 1, N
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = KX
 | |
|                      DO 30, I = 1, J - 1
 | |
|                         IF (NOCONJ) THEN
 | |
|                         X( IX ) = X( IX ) + TEMP*A( I, J )
 | |
|                         ELSE
 | |
|                         X( IX ) = X( IX ) + TEMP*DCONJG(A( I, J ))
 | |
|                         ENDIF
 | |
|                         IX      = IX      + INCX
 | |
|    30                CONTINUE
 | |
|                      IF (NOCONJ) THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*A( J, J )
 | |
|                      ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*DCONJG(A( J, J ))
 | |
|                      ENDIF
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 60, J = N, 1, -1
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      TEMP = X( J )
 | |
|                      DO 50, I = N, J + 1, -1
 | |
|                         IF (NOCONJ) THEN
 | |
|                         X( I ) = X( I ) + TEMP*A( I, J )
 | |
|                         ELSE
 | |
|                         X( I ) = X( I ) + TEMP*DCONJG(A( I, J ))
 | |
|                         ENDIF
 | |
|    50                CONTINUE
 | |
|                      IF (NOCONJ) THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*A( J, J )
 | |
|                      ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( J ) = X( J )*DCONJG(A( J, J ))
 | |
|                      ENDIF
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                KX = KX + ( N - 1 )*INCX
 | |
|                JX = KX
 | |
|                DO 80, J = N, 1, -1
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = KX
 | |
|                      DO 70, I = N, J + 1, -1
 | |
|                      IF (NOCONJ) THEN
 | |
|                         X( IX ) = X( IX ) + TEMP*A( I, J )
 | |
|                      ELSE
 | |
|                         X( IX ) = X( IX ) + TEMP*DCONJG(A( I, J ))
 | |
|                      ENDIF
 | |
|                         IX      = IX      - INCX
 | |
|    70                CONTINUE
 | |
|                      IF (NOCONJ) THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*A( J, J )
 | |
|                      ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  X( JX ) = X( JX )*DCONJG(A( J, J ))
 | |
|                      ENDIF
 | |
|                   END IF
 | |
|                   JX = JX - INCX
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := A'*x  or  x := conjg( A' )*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 110, J = N, 1, -1
 | |
|                   TEMP = X( J )
 | |
|                   IF( NOCONJ )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*A( J, J )
 | |
|                      DO 90, I = J - 1, 1, -1
 | |
|                         TEMP = TEMP + A( I, J )*X( I )
 | |
|    90                CONTINUE
 | |
|                   ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*DCONJG( A( J, J ) )
 | |
|                      DO 100, I = J - 1, 1, -1
 | |
|                         TEMP = TEMP + DCONJG( A( I, J ) )*X( I )
 | |
|   100                CONTINUE
 | |
|                   END IF
 | |
|                   X( J ) = TEMP
 | |
|   110          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX + ( N - 1 )*INCX
 | |
|                DO 140, J = N, 1, -1
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = JX
 | |
|                   IF( NOCONJ )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*A( J, J )
 | |
|                      DO 120, I = J - 1, 1, -1
 | |
|                         IX   = IX   - INCX
 | |
|                         TEMP = TEMP + A( I, J )*X( IX )
 | |
|   120                CONTINUE
 | |
|                   ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*DCONJG( A( J, J ) )
 | |
|                      DO 130, I = J - 1, 1, -1
 | |
|                         IX   = IX   - INCX
 | |
|                         TEMP = TEMP + DCONJG( A( I, J ) )*X( IX )
 | |
|   130                CONTINUE
 | |
|                   END IF
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   - INCX
 | |
|   140          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 170, J = 1, N
 | |
|                   TEMP = X( J )
 | |
|                   IF( NOCONJ )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*A( J, J )
 | |
|                      DO 150, I = J + 1, N
 | |
|                         TEMP = TEMP + A( I, J )*X( I )
 | |
|   150                CONTINUE
 | |
|                   ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*DCONJG( A( J, J ) )
 | |
|                      DO 160, I = J + 1, N
 | |
|                         TEMP = TEMP + DCONJG( A( I, J ) )*X( I )
 | |
|   160                CONTINUE
 | |
|                   END IF
 | |
|                   X( J ) = TEMP
 | |
|   170          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 200, J = 1, N
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = JX
 | |
|                   IF( NOCONJ )THEN
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*A( J, J )
 | |
|                      DO 180, I = J + 1, N
 | |
|                         IX   = IX   + INCX
 | |
|                         TEMP = TEMP + A( I, J )*X( IX )
 | |
|   180                CONTINUE
 | |
|                   ELSE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP*DCONJG( A( J, J ) )
 | |
|                      DO 190, I = J + 1, N
 | |
|                         IX   = IX   + INCX
 | |
|                         TEMP = TEMP + DCONJG( A( I, J ) )*X( IX )
 | |
|   190                CONTINUE
 | |
|                   END IF
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   + INCX
 | |
|   200          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTRMV .
 | |
| *
 | |
|       END
 |