451 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CGBMVF( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
 | |
|      $                   BETA, Y, INCY )
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX        ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, KL, KU, LDA, M, N
 | |
|       CHARACTER*1        TRANS
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX         A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  ZGBMV  performs one of the matrix-vector operations
 | |
| *
 | |
| *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
 | |
| *
 | |
| *     y := alpha*conjg( A' )*x + beta*y,
 | |
| *
 | |
| *  where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  M      - INTEGER.
 | |
| *           On entry, M specifies the number of rows of the matrix A.
 | |
| *           M must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the number of columns of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  KL     - INTEGER.
 | |
| *           On entry, KL specifies the number of sub-diagonals of the
 | |
| *           matrix A. KL must satisfy  0 .le. KL.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  KU     - INTEGER.
 | |
| *           On entry, KU specifies the number of super-diagonals of the
 | |
| *           matrix A. KU must satisfy  0 .le. KU.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - COMPLEX*16      .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 | |
| *           Before entry, the leading ( kl + ku + 1 ) by n part of the
 | |
| *           array A must contain the matrix of coefficients, supplied
 | |
| *           column by column, with the leading diagonal of the matrix in
 | |
| *           row ( ku + 1 ) of the array, the first super-diagonal
 | |
| *           starting at position 2 in row ku, the first sub-diagonal
 | |
| *           starting at position 1 in row ( ku + 2 ), and so on.
 | |
| *           Elements in the array A that do not correspond to elements
 | |
| *           in the band matrix (such as the top left ku by ku triangle)
 | |
| *           are not referenced.
 | |
| *           The following program segment will transfer a band matrix
 | |
| *           from conventional full matrix storage to band storage:
 | |
| *
 | |
| *                 DO 20, J = 1, N
 | |
| *                    K = KU + 1 - J
 | |
| *                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
| *                       A( K + I, J ) = matrix( I, J )
 | |
| *              10    CONTINUE
 | |
| *              20 CONTINUE
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           ( kl + ku + 1 ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - COMPLEX*16       array of DIMENSION at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | |
| *           and at least
 | |
| *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | |
| *           Before entry, the incremented array X must contain the
 | |
| *           vector x.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - COMPLEX*16      .
 | |
| *           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *           supplied as zero then Y need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  Y      - COMPLEX*16       array of DIMENSION at least
 | |
| *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | |
| *           and at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | |
| *           Before entry, the incremented array Y must contain the
 | |
| *           vector y. On exit, Y is overwritten by the updated vector y.
 | |
| *
 | |
| *
 | |
| *  INCY   - INTEGER.
 | |
| *           On entry, INCY specifies the increment for the elements of
 | |
| *           Y. INCY must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE
 | |
|       PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX*16         TEMP
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
 | |
|      $                   LENX, LENY
 | |
|       LOGICAL            NOCONJ, NOTRANS, XCONJ
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CONJG, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'R' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'O' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'U' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'S' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'D' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( M.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( KL.LT.0 )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( KU.LT.0 )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
 | |
|          INFO = 8
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 10
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 13
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'ZGBMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | |
|      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|      $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'U' ))
 | |
| 
 | |
|       NOTRANS = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' )
 | |
|      $     .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'S' ))
 | |
| 
 | |
|       XCONJ  = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|      $     .OR. LSAME( TRANS, 'R' ) .OR. LSAME( TRANS, 'C' ))
 | |
| *
 | |
| *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | |
| *     up the start points in  X  and  Y.
 | |
| *
 | |
|       IF(NOTRANS)THEN
 | |
|          LENX = N
 | |
|          LENY = M
 | |
|       ELSE
 | |
|          LENX = M
 | |
|          LENY = N
 | |
|       END IF
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( LENX - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( LENY - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the band part of A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE )THEN
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 10, I = 1, LENY
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20, I = 1, LENY
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 30, I = 1, LENY
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY      = IY   + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, I = 1, LENY
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY      = IY           + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
| 
 | |
|       KUP1 = KU + 1
 | |
| 
 | |
|       IF(XCONJ)THEN
 | |
| 
 | |
|       IF(NOTRANS)THEN
 | |
| *
 | |
| *        Form  y := alpha*A*x + y.
 | |
| *
 | |
|          JX = KX
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             DO 60, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   TEMP = ALPHA*X( JX )
 | |
|                   K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( I ) = Y( I ) + TEMP*A( K + I, J )
 | |
|    50             CONTINUE
 | |
|                ELSE
 | |
|                   DO 55, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( I ) = Y( I ) + TEMP*CONJG(A( K + I, J ))
 | |
|    55             CONTINUE
 | |
|                END IF
 | |
| 
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             DO 80, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   TEMP = ALPHA*X( JX )
 | |
|                   IY   = KY
 | |
|                   K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
 | |
|                      IY      = IY      + INCY
 | |
|    70             CONTINUE
 | |
|                   ELSE
 | |
|                   DO 75, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                     Y( IY ) = Y( IY ) + TEMP*CONJG(A( K + I, J ))
 | |
|                     IY      = IY      + INCY
 | |
|    75             CONTINUE
 | |
|                END IF
 | |
| 
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|                IF( J.GT.KU )
 | |
|      $            KY = KY + INCY
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
 | |
| *
 | |
|          JY = KY
 | |
|          IF( INCX.EQ.1 )THEN
 | |
|             DO 110, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + A( K + I, J )*X( I )
 | |
|    90             CONTINUE
 | |
|                ELSE
 | |
|                   DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + CONJG( A( K + I, J ) )*X( I )
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
|             DO 140, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                IX   = KX
 | |
|                K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + A( K + I, J )*X( IX )
 | |
|                      IX   = IX   + INCX
 | |
|   120             CONTINUE
 | |
|                ELSE
 | |
|                   DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + CONJG( A( K + I, J ) )*X( IX )
 | |
|                      IX   = IX   + INCX
 | |
|   130             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|                IF( J.GT.KU )
 | |
|      $            KX = KX + INCX
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
|       ELSE
 | |
| 
 | |
|       IF(NOTRANS)THEN
 | |
| *
 | |
| *        Form  y := alpha*A*x + y.
 | |
| *
 | |
|          JX = KX
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             DO 160, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   TEMP = ALPHA*CONJG(X( JX ))
 | |
|                   K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 150, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( I ) = Y( I ) + TEMP*A( K + I, J )
 | |
|   150             CONTINUE
 | |
|                ELSE
 | |
|                   DO 155, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( I ) = Y( I ) + TEMP*CONJG(A( K + I, J ))
 | |
|   155             CONTINUE
 | |
|                END IF
 | |
| 
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|   160       CONTINUE
 | |
|          ELSE
 | |
|             DO 180, J = 1, N
 | |
|                IF( X( JX ).NE.ZERO )THEN
 | |
|                   TEMP = ALPHA*CONJG(X( JX ))
 | |
|                   IY   = KY
 | |
|                   K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 170, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
 | |
|                      IY      = IY      + INCY
 | |
|   170             CONTINUE
 | |
|                   ELSE
 | |
|                   DO 175, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                     Y( IY ) = Y( IY ) + TEMP*CONJG(A( K + I, J ))
 | |
|                     IY      = IY      + INCY
 | |
|   175             CONTINUE
 | |
|                END IF
 | |
| 
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|                IF( J.GT.KU )
 | |
|      $            KY = KY + INCY
 | |
|   180       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
 | |
| *
 | |
|          JY = KY
 | |
|          IF( INCX.EQ.1 )THEN
 | |
|             DO 210, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 190, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + A( K + I, J )*CONJG(X( I ))
 | |
|  190             CONTINUE
 | |
|                ELSE
 | |
|                   DO 200, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                  TEMP = TEMP + CONJG( A( K + I, J ) )*CONJG(X( I ))
 | |
|   200             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|   210       CONTINUE
 | |
|          ELSE
 | |
|             DO 240, J = 1, N
 | |
|                TEMP = ZERO
 | |
|                IX   = KX
 | |
|                K    = KUP1 - J
 | |
|                IF( NOCONJ )THEN
 | |
|                   DO 220, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                      TEMP = TEMP + A( K + I, J )*CONJG(X( IX ))
 | |
|                      IX   = IX   + INCX
 | |
|   220             CONTINUE
 | |
|                ELSE
 | |
|                   DO 230, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
|                 TEMP = TEMP + CONJG( A( K + I, J ) )*CONJG(X(IX ))
 | |
|                      IX   = IX   + INCX
 | |
|   230             CONTINUE
 | |
|                END IF
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP
 | |
|                JY      = JY      + INCY
 | |
|                IF( J.GT.KU )
 | |
|      $            KX = KX + INCX
 | |
|   240       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
|       END IF
 | |
| 
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGBMV .
 | |
| *
 | |
|       END
 |