496 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			496 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /*********************************************************************/
 | |
| /* Copyright 2009, 2010 The University of Texas at Austin.           */
 | |
| /* All rights reserved.                                              */
 | |
| /*                                                                   */
 | |
| /* Redistribution and use in source and binary forms, with or        */
 | |
| /* without modification, are permitted provided that the following   */
 | |
| /* conditions are met:                                               */
 | |
| /*                                                                   */
 | |
| /*   1. Redistributions of source code must retain the above         */
 | |
| /*      copyright notice, this list of conditions and the following  */
 | |
| /*      disclaimer.                                                  */
 | |
| /*                                                                   */
 | |
| /*   2. Redistributions in binary form must reproduce the above      */
 | |
| /*      copyright notice, this list of conditions and the following  */
 | |
| /*      disclaimer in the documentation and/or other materials       */
 | |
| /*      provided with the distribution.                              */
 | |
| /*                                                                   */
 | |
| /*    THIS  SOFTWARE IS PROVIDED  BY THE  UNIVERSITY OF  TEXAS AT    */
 | |
| /*    AUSTIN  ``AS IS''  AND ANY  EXPRESS OR  IMPLIED WARRANTIES,    */
 | |
| /*    INCLUDING, BUT  NOT LIMITED  TO, THE IMPLIED  WARRANTIES OF    */
 | |
| /*    MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR  PURPOSE ARE    */
 | |
| /*    DISCLAIMED.  IN  NO EVENT SHALL THE UNIVERSITY  OF TEXAS AT    */
 | |
| /*    AUSTIN OR CONTRIBUTORS BE  LIABLE FOR ANY DIRECT, INDIRECT,    */
 | |
| /*    INCIDENTAL,  SPECIAL, EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES    */
 | |
| /*    (INCLUDING, BUT  NOT LIMITED TO,  PROCUREMENT OF SUBSTITUTE    */
 | |
| /*    GOODS  OR  SERVICES; LOSS  OF  USE,  DATA,  OR PROFITS;  OR    */
 | |
| /*    BUSINESS INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF    */
 | |
| /*    LIABILITY, WHETHER  IN CONTRACT, STRICT  LIABILITY, OR TORT    */
 | |
| /*    (INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT    */
 | |
| /*    OF  THE  USE OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE    */
 | |
| /*    POSSIBILITY OF SUCH DAMAGE.                                    */
 | |
| /*                                                                   */
 | |
| /* The views and conclusions contained in the software and           */
 | |
| /* documentation are those of the authors and should not be          */
 | |
| /* interpreted as representing official policies, either expressed   */
 | |
| /* or implied, of The University of Texas at Austin.                 */
 | |
| /*********************************************************************/
 | |
| 
 | |
| #ifndef KERNEL_OPERATION
 | |
| #ifndef COMPLEX
 | |
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
 | |
| 	KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
 | |
| #else
 | |
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
 | |
| 	KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef ICOPY_OPERATION
 | |
| #ifndef TRANS
 | |
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| #else
 | |
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef OCOPY_OPERATION
 | |
| #ifdef TRANS
 | |
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| #else
 | |
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef M
 | |
| #define M	args -> n
 | |
| #endif
 | |
| 
 | |
| #ifndef N
 | |
| #define N	args -> n
 | |
| #endif
 | |
| 
 | |
| #ifndef K
 | |
| #define K	args -> k
 | |
| #endif
 | |
| 
 | |
| #ifndef A
 | |
| #define A	args -> a
 | |
| #endif
 | |
| 
 | |
| #ifndef C
 | |
| #define C	args -> c
 | |
| #endif
 | |
| 
 | |
| #ifndef LDA
 | |
| #define LDA	args -> lda
 | |
| #endif
 | |
| 
 | |
| #ifndef LDC
 | |
| #define LDC	args -> ldc
 | |
| #endif
 | |
| 
 | |
| #ifdef TIMING
 | |
| #define START_RPCC()		rpcc_counter = rpcc()
 | |
| #define STOP_RPCC(COUNTER)	COUNTER  += rpcc() - rpcc_counter
 | |
| #else
 | |
| #define START_RPCC()
 | |
| #define STOP_RPCC(COUNTER)
 | |
| #endif
 | |
| 
 | |
| int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG dummy) {
 | |
| 
 | |
|   BLASLONG m_from, m_to, n_from, n_to, k, lda, ldc;
 | |
|   FLOAT *a, *c, *alpha, *beta;
 | |
| 
 | |
|   BLASLONG ls, is, js;
 | |
|   BLASLONG min_l, min_i, min_j;
 | |
|   BLASLONG jjs, min_jj;
 | |
|   BLASLONG m_start, m_end;
 | |
| 
 | |
|   int shared = ((GEMM_UNROLL_M == GEMM_UNROLL_N) && !HAVE_EX_L2);
 | |
| 
 | |
|   FLOAT *aa;
 | |
| 
 | |
| #ifdef TIMING
 | |
|   unsigned long long rpcc_counter;
 | |
|   unsigned long long innercost  = 0;
 | |
|   unsigned long long outercost  = 0;
 | |
|   unsigned long long kernelcost = 0;
 | |
|   double total;
 | |
| #endif
 | |
| 
 | |
|   k = K;
 | |
| 
 | |
|   a = (FLOAT *)A;
 | |
|   c = (FLOAT *)C;
 | |
| 
 | |
|   lda = LDA;
 | |
|   ldc = LDC;
 | |
| 
 | |
|   alpha = (FLOAT *)args -> alpha;
 | |
|   beta  = (FLOAT *)args -> beta;
 | |
| 
 | |
|   m_from = 0;
 | |
|   m_to   = M;
 | |
| 
 | |
|   if (range_m) {
 | |
|     m_from = *(((BLASLONG *)range_m) + 0);
 | |
|     m_to   = *(((BLASLONG *)range_m) + 1);
 | |
|   }
 | |
| 
 | |
|   n_from = 0;
 | |
|   n_to   = N;
 | |
| 
 | |
|   if (range_n) {
 | |
|     n_from = *(((BLASLONG *)range_n) + 0);
 | |
|     n_to   = *(((BLASLONG *)range_n) + 1);
 | |
|   }
 | |
| 
 | |
|   if (beta) {
 | |
| #if !defined(COMPLEX) || defined(HERK)
 | |
|     if (beta[0] != ONE)
 | |
| #else
 | |
|     if ((beta[0] != ONE) || (beta[1] != ZERO))
 | |
| #endif
 | |
|       syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc);
 | |
|   }
 | |
| 
 | |
|   if ((k == 0) || (alpha == NULL)) return 0;
 | |
| 
 | |
|   if ((alpha[0] == ZERO)
 | |
| #if defined(COMPLEX) && !defined(HERK)
 | |
|       && (alpha[1] == ZERO)
 | |
| #endif
 | |
|       ) return 0;
 | |
| 
 | |
| #if 0
 | |
|   fprintf(stderr, "m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n",
 | |
| 	  m_from, m_to, n_from, n_to);
 | |
| #endif
 | |
| 
 | |
|   for(js = n_from; js < n_to; js += GEMM_R){
 | |
|     min_j = n_to - js;
 | |
|     if (min_j > GEMM_R) min_j = GEMM_R;
 | |
| 
 | |
| #ifndef LOWER
 | |
|     m_start = m_from;
 | |
|     m_end   = js + min_j;
 | |
|     if (m_end > m_to) m_end = m_to;
 | |
| #else
 | |
|     m_start = m_from;
 | |
|     m_end   = m_to;
 | |
|     if (m_start < js) m_start = js;
 | |
| #endif
 | |
| 
 | |
|     for(ls = 0; ls < k; ls += min_l){
 | |
|       min_l = k - ls;
 | |
|       if (min_l >= GEMM_Q * 2) {
 | |
| 	min_l = GEMM_Q;
 | |
|       } else
 | |
| 	if (min_l > GEMM_Q) {
 | |
| 	  min_l = (min_l + 1) / 2;
 | |
| 	}
 | |
| 
 | |
|       min_i = m_end - m_start;
 | |
| 
 | |
|       if (min_i >= GEMM_P * 2) {
 | |
| 	min_i = GEMM_P;
 | |
|       } else
 | |
| 	if (min_i > GEMM_P) {
 | |
| 	  min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
 | |
| 	}
 | |
| 
 | |
| #ifndef LOWER
 | |
| 
 | |
|       if (m_end >= js) {
 | |
| 
 | |
| 	aa = sb + min_l * MAX(m_start - js, 0) * COMPSIZE;
 | |
| 	if (!shared) aa = sa;
 | |
| 
 | |
| 	for(jjs = MAX(m_start, js); jjs < js + min_j; jjs += min_jj){
 | |
| 	  min_jj = js + min_j - jjs;
 | |
| 	  if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
 | |
| 
 | |
| 	  if (!shared && (jjs - MAX(m_start, js) < min_i)) {
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    ICOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sa + min_l * (jjs - js) * COMPSIZE);
 | |
| 
 | |
| 	    STOP_RPCC(innercost);
 | |
| 	  }
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
 | |
| 
 | |
| 	  STOP_RPCC(outercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_jj, min_l, alpha, aa, sb + min_l * (jjs - js)  * COMPSIZE, c, ldc, MAX(m_start, js), jjs);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 	}
 | |
| 
 | |
| 	for(is = MAX(m_start, js) + min_i; is < m_end; is += min_i){
 | |
| 	  min_i = m_end - is;
 | |
| 	  if (min_i >= GEMM_P * 2) {
 | |
| 	    min_i = GEMM_P;
 | |
| 	  } else
 | |
| 	    if (min_i > GEMM_P) {
 | |
| 	      min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
 | |
| 	    }
 | |
| 
 | |
| 	  aa = sb + min_l * (is - js)  * COMPSIZE;
 | |
| 
 | |
| 	  if (!shared) {
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | |
| 
 | |
| 	    STOP_RPCC(innercost);
 | |
| 
 | |
| 	    aa = sa;
 | |
| 	  }
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_j, min_l, alpha, aa, sb, c, ldc, is, js);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       }
 | |
| 
 | |
|       if (m_start < js) {
 | |
| 
 | |
| 	if (m_end < js) {
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
 | |
| 
 | |
| 	  STOP_RPCC(innercost);
 | |
| 
 | |
| 	  for(jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_MN){
 | |
| 	    min_jj = min_j + js - jjs;
 | |
| 	    if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
 | |
| 
 | |
| 	    STOP_RPCC(outercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js)  * COMPSIZE, c, ldc, m_start, jjs);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	  }
 | |
| 	} else {
 | |
| 	  min_i = 0;
 | |
| 	}
 | |
| 
 | |
| 	for(is = m_start + min_i; is < MIN(m_end, js); is += min_i){
 | |
| 
 | |
| 	  min_i = MIN(m_end, js)- is;
 | |
| 	  if (min_i >= GEMM_P * 2) {
 | |
| 	    min_i = GEMM_P;
 | |
| 	  } else
 | |
| 	    if (min_i > GEMM_P) {
 | |
| 	      min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
 | |
| 	    }
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | |
| 
 | |
| 	  STOP_RPCC(innercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	}
 | |
|       }
 | |
| 
 | |
| #else
 | |
| 
 | |
|       if (m_start < js + min_j) {
 | |
| 
 | |
| 	aa = sb + min_l * (m_start - js) * COMPSIZE;
 | |
| 
 | |
| 	if (!shared) {
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
 | |
| 
 | |
| 	  STOP_RPCC(innercost);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	START_RPCC();
 | |
| 
 | |
| 	OCOPY_OPERATION(min_l, (shared? (min_i) : MIN(min_i, min_j + js - m_start)), a, lda, ls, m_start, aa);
 | |
| 
 | |
| 	STOP_RPCC(outercost);
 | |
| 
 | |
| 	START_RPCC();
 | |
| 
 | |
| 	KERNEL_OPERATION(min_i, MIN(min_i, min_j + js - m_start), min_l, alpha, (shared? (aa) : (sa)), aa, c, ldc, m_start, m_start);
 | |
| 
 | |
| 	STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	for(jjs = js; jjs < m_start; jjs += GEMM_UNROLL_N){
 | |
| 	  min_jj = m_start - jjs;
 | |
| 	  if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
 | |
| 
 | |
| 	  STOP_RPCC(outercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_jj, min_l, alpha, (shared? (aa) : (sa)), sb + min_l * (jjs - js)  * COMPSIZE, c, ldc, m_start, jjs);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	for(is = m_start + min_i; is < m_end; is += min_i){
 | |
| 
 | |
| 	  min_i = m_end - is;
 | |
| 
 | |
| 	  if (min_i >= GEMM_P * 2) {
 | |
| 	    min_i = GEMM_P;
 | |
| 	  } else
 | |
| 	    if (min_i > GEMM_P) {
 | |
| 	      min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
 | |
| 	    }
 | |
| 
 | |
| 	  if (is  < js + min_j) {
 | |
| 
 | |
| 	    if (!shared) {
 | |
| 	      START_RPCC();
 | |
| 
 | |
| 	      ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | |
| 
 | |
| 	      STOP_RPCC(innercost);
 | |
| 	    }
 | |
| 
 | |
| 	    aa = sb + min_l * (is - js) * COMPSIZE;
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    OCOPY_OPERATION(min_l, (shared? (min_i) : MIN(min_i, min_j - is + js)), a, lda, ls, is, aa);
 | |
| 
 | |
| 	    STOP_RPCC(outercost);
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    KERNEL_OPERATION(min_i, MIN(min_i, min_j - is + js), min_l, alpha,  (shared? (aa) : (sa)), aa,  c, ldc, is, is);
 | |
| 
 | |
| 	    STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    KERNEL_OPERATION(min_i, is - js, min_l, alpha, (shared? (aa) : (sa)), sb,  c, ldc, is, js);
 | |
| 
 | |
| 	    STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	  } else {
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | |
| 
 | |
| 	    STOP_RPCC(innercost);
 | |
| 
 | |
| 	    START_RPCC();
 | |
| 
 | |
| 	    KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb,  c, ldc, is, js);
 | |
| 
 | |
| 	    STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	  }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       } else {
 | |
| 
 | |
| 	START_RPCC();
 | |
| 
 | |
| 	ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
 | |
| 
 | |
| 	STOP_RPCC(innercost);
 | |
| 
 | |
| 	for(jjs = js; jjs < min_j; jjs += GEMM_UNROLL_N){
 | |
| 	  min_jj = min_j - jjs;
 | |
| 	  if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
 | |
| 
 | |
| 	  STOP_RPCC(outercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js)  * COMPSIZE, c, ldc, m_start, jjs);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	for(is = m_start + min_i; is < m_end; is += min_i){
 | |
| 
 | |
| 	  min_i = m_end - is;
 | |
| 
 | |
| 	  if (min_i >= GEMM_P * 2) {
 | |
| 	    min_i = GEMM_P;
 | |
| 	  } else
 | |
| 	    if (min_i > GEMM_P) {
 | |
| 	      min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
 | |
| 	    }
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
 | |
| 
 | |
| 	  STOP_RPCC(innercost);
 | |
| 
 | |
| 	  START_RPCC();
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb,  c, ldc, is, js);
 | |
| 
 | |
| 	  STOP_RPCC(kernelcost);
 | |
| 
 | |
| 	}
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifdef TIMING
 | |
|   total = (double)outercost + (double)innercost + (double)kernelcost;
 | |
| 
 | |
|   printf( "Copy A : %5.2f Copy  B: %5.2f  Kernel : %5.2f  kernel Effi. : %5.2f Total Effi. : %5.2f\n",
 | |
| 	   innercost / total * 100., outercost / total * 100., kernelcost / total * 100.,
 | |
| 	  (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / (double)DNUMOPT,
 | |
| 	  (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / (double)DNUMOPT);
 | |
| 
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 |