239 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSTT21
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | |
| *                          RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            KBAND, LDU, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), SD( * ),
 | |
| *      $                   SE( * ), U( LDU, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTT21 checks a decomposition of the form
 | |
| *>
 | |
| *>    A = U S U'
 | |
| *>
 | |
| *> where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
 | |
| *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
 | |
| *> Two tests are performed:
 | |
| *>
 | |
| *>    RESULT(1) = | A - U S U' | / ( |A| n ulp )
 | |
| *>
 | |
| *>    RESULT(2) = | I - UU' | / ( n ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, DSTT21 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KBAND
 | |
| *> \verbatim
 | |
| *>          KBAND is INTEGER
 | |
| *>          The bandwidth of the matrix S.  It may only be zero or one.
 | |
| *>          If zero, then S is diagonal, and SE is not referenced.  If
 | |
| *>          one, then S is symmetric tri-diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AD
 | |
| *> \verbatim
 | |
| *>          AD is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal of the original (unfactored) matrix A.  A is
 | |
| *>          assumed to be symmetric tridiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AE
 | |
| *> \verbatim
 | |
| *>          AE is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The off-diagonal of the original (unfactored) matrix A.  A
 | |
| *>          is assumed to be symmetric tridiagonal.  AE(1) is the (1,2)
 | |
| *>          and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SD
 | |
| *> \verbatim
 | |
| *>          SD is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal of the (symmetric tri-) diagonal matrix S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SE
 | |
| *> \verbatim
 | |
| *>          SE is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
 | |
| *>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is the
 | |
| *>          (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
 | |
| *>          element, etc.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension (LDU, N)
 | |
| *>          The orthogonal matrix in the decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N*(N+1))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The values computed by the two tests described above.  The
 | |
| *>          values are currently limited to 1/ulp, to avoid overflow.
 | |
| *>          RESULT(1) is always modified.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | |
|      $                   RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            KBAND, LDU, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), SD( * ),
 | |
|      $                   SE( * ), U( LDU, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J
 | |
|       DOUBLE PRECISION   ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
 | |
|       EXTERNAL           DLAMCH, DLANGE, DLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DLASET, DSYR, DSYR2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     1)      Constants
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
| *
 | |
| *     Do Test 1
 | |
| *
 | |
| *     Copy A & Compute its 1-Norm:
 | |
| *
 | |
|       CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
 | |
| *
 | |
|       ANORM = ZERO
 | |
|       TEMP1 = ZERO
 | |
| *
 | |
|       DO 10 J = 1, N - 1
 | |
|          WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
 | |
|          WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
 | |
|          TEMP2 = ABS( AE( J ) )
 | |
|          ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
 | |
|          TEMP1 = TEMP2
 | |
|    10 CONTINUE
 | |
| *
 | |
|       WORK( N**2 ) = AD( N )
 | |
|       ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
 | |
| *
 | |
| *     Norm of A - USU'
 | |
| *
 | |
|       DO 20 J = 1, N
 | |
|          CALL DSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
 | |
|    20 CONTINUE
 | |
| *
 | |
|       IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
 | |
|          DO 30 J = 1, N - 1
 | |
|             CALL DSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
 | |
|      $                  WORK, N )
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       WNORM = DLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) )
 | |
| *
 | |
|       IF( ANORM.GT.WNORM ) THEN
 | |
|          RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 2
 | |
| *
 | |
| *     Compute  UU' - I
 | |
| *
 | |
|       CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
 | |
|      $            N )
 | |
| *
 | |
|       DO 40 J = 1, N
 | |
|          WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
 | |
|    40 CONTINUE
 | |
| *
 | |
|       RESULT( 2 ) = MIN( DBLE( N ), DLANGE( '1', N, N, WORK, N,
 | |
|      $              WORK( N**2+1 ) ) ) / ( N*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTT21
 | |
| *
 | |
|       END
 |