727 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			727 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DCHKSB
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
 | |
| *                          THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
 | |
| *                          LWORK, RESULT, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
 | |
| *      $                   NWDTHS
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), KK( * ), NN( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
 | |
| *      $                   U( LDU, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DCHKSB tests the reduction of a symmetric band matrix to tridiagonal
 | |
| *> form, used with the symmetric eigenvalue problem.
 | |
| *>
 | |
| *> DSBTRD factors a symmetric band matrix A as  U S U' , where ' means
 | |
| *> transpose, S is symmetric tridiagonal, and U is orthogonal.
 | |
| *> DSBTRD can use either just the lower or just the upper triangle
 | |
| *> of A; DCHKSB checks both cases.
 | |
| *>
 | |
| *> When DCHKSB is called, a number of matrix "sizes" ("n's"), a number
 | |
| *> of bandwidths ("k's"), and a number of matrix "types" are
 | |
| *> specified.  For each size ("n"), each bandwidth ("k") less than or
 | |
| *> equal to "n", and each type of matrix, one matrix will be generated
 | |
| *> and used to test the symmetric banded reduction routine.  For each
 | |
| *> matrix, a number of tests will be performed:
 | |
| *>
 | |
| *> (1)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with
 | |
| *>                                         UPLO='U'
 | |
| *>
 | |
| *> (2)     | I - UU' | / ( n ulp )
 | |
| *>
 | |
| *> (3)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with
 | |
| *>                                         UPLO='L'
 | |
| *>
 | |
| *> (4)     | I - UU' | / ( n ulp )
 | |
| *>
 | |
| *> The "sizes" are specified by an array NN(1:NSIZES); the value of
 | |
| *> each element NN(j) specifies one size.
 | |
| *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *> Currently, the list of possible types is:
 | |
| *>
 | |
| *> (1)  The zero matrix.
 | |
| *> (2)  The identity matrix.
 | |
| *>
 | |
| *> (3)  A diagonal matrix with evenly spaced entries
 | |
| *>      1, ..., ULP  and random signs.
 | |
| *>      (ULP = (first number larger than 1) - 1 )
 | |
| *> (4)  A diagonal matrix with geometrically spaced entries
 | |
| *>      1, ..., ULP  and random signs.
 | |
| *> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>      and random signs.
 | |
| *>
 | |
| *> (6)  Same as (4), but multiplied by SQRT( overflow threshold )
 | |
| *> (7)  Same as (4), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *> (8)  A matrix of the form  U' D U, where U is orthogonal and
 | |
| *>      D has evenly spaced entries 1, ..., ULP with random signs
 | |
| *>      on the diagonal.
 | |
| *>
 | |
| *> (9)  A matrix of the form  U' D U, where U is orthogonal and
 | |
| *>      D has geometrically spaced entries 1, ..., ULP with random
 | |
| *>      signs on the diagonal.
 | |
| *>
 | |
| *> (10) A matrix of the form  U' D U, where U is orthogonal and
 | |
| *>      D has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>      signs on the diagonal.
 | |
| *>
 | |
| *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | |
| *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | |
| *>
 | |
| *> (13) Symmetric matrix with random entries chosen from (-1,1).
 | |
| *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | |
| *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  If it is zero,
 | |
| *>          DCHKSB does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NWDTHS
 | |
| *> \verbatim
 | |
| *>          NWDTHS is INTEGER
 | |
| *>          The number of bandwidths to use.  If it is zero,
 | |
| *>          DCHKSB does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KK
 | |
| *> \verbatim
 | |
| *>          KK is INTEGER array, dimension (NWDTHS)
 | |
| *>          An array containing the bandwidths to be used for the band
 | |
| *>          matrices.  The values must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE.   If it is zero, DCHKSB
 | |
| *>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | |
| *>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | |
| *>          defined, which is to use whatever matrix is in A.  This
 | |
| *>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | |
| *>          DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to DCHKSB to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns IINFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension
 | |
| *>                            (LDA, max(NN))
 | |
| *>          Used to hold the matrix whose eigenvalues are to be
 | |
| *>          computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 2 (not 1!)
 | |
| *>          and at least max( KK )+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SD
 | |
| *> \verbatim
 | |
| *>          SD is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>          Used to hold the diagonal of the tridiagonal matrix computed
 | |
| *>          by DSBTRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SE
 | |
| *> \verbatim
 | |
| *>          SE is DOUBLE PRECISION array, dimension (max(NN))
 | |
| *>          Used to hold the off-diagonal of the tridiagonal matrix
 | |
| *>          computed by DSBTRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension (LDU, max(NN))
 | |
| *>          Used to hold the orthogonal matrix computed by DSBTRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  It must be at least 1
 | |
| *>          and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          max( LDA+1, max(NN)+1 )*max(NN).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (4)
 | |
| *>          The values computed by the tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid
 | |
| *>          overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          If 0, then everything ran OK.
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>       Some Local Variables and Parameters:
 | |
| *>       ---- ----- --------- --- ----------
 | |
| *>       ZERO, ONE       Real 0 and 1.
 | |
| *>       MAXTYP          The number of types defined.
 | |
| *>       NTEST           The number of tests performed, or which can
 | |
| *>                       be performed so far, for the current matrix.
 | |
| *>       NTESTT          The total number of tests performed so far.
 | |
| *>       NMAX            Largest value in NN.
 | |
| *>       NMATS           The number of matrices generated so far.
 | |
| *>       NERRS           The number of tests which have exceeded THRESH
 | |
| *>                       so far.
 | |
| *>       COND, IMODE     Values to be passed to the matrix generators.
 | |
| *>       ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>       OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>       ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | |
| *>               The following four arrays decode JTYPE:
 | |
| *>       KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>       KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                       generator for type "j".
 | |
| *>       KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                       O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
 | |
|      $                   THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
 | |
|      $                   LWORK, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
 | |
|      $                   NWDTHS
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), KK( * ), NN( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
 | |
|      $                   U( LDU, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, TEN
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | |
|      $                   TEN = 10.0D0 )
 | |
|       DOUBLE PRECISION   HALF
 | |
|       PARAMETER          ( HALF = ONE / TWO )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 15 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN, BADNNB
 | |
|       INTEGER            I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
 | |
|      $                   JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
 | |
|      $                   NMATS, NMAX, NTEST, NTESTT
 | |
|       DOUBLE PRECISION   ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
 | |
|      $                   TEMP1, ULP, ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
 | |
|      $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLACPY, DLASET, DLASUM, DLATMR, DLATMS, DSBT21,
 | |
|      $                   DSBTRD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 5*4, 5*5, 3*8 /
 | |
|       DATA               KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
 | |
|      $                   2, 3 /
 | |
|       DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | |
|      $                   0, 0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       INFO = 0
 | |
| *
 | |
| *     Important constants
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
|       NMAX = 1
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
|       BADNNB = .FALSE.
 | |
|       KMAX = 0
 | |
|       DO 20 J = 1, NSIZES
 | |
|          KMAX = MAX( KMAX, KK( J ) )
 | |
|          IF( KK( J ).LT.0 )
 | |
|      $      BADNNB = .TRUE.
 | |
|    20 CONTINUE
 | |
|       KMAX = MIN( NMAX-1, KMAX )
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NWDTHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( BADNNB ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.KMAX+1 ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LDU.LT.NMAX ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DCHKSB', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTUNFL = SQRT( UNFL )
 | |
|       RTOVFL = SQRT( OVFL )
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
|       NMATS = 0
 | |
| *
 | |
|       DO 190 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          ANINV = ONE / DBLE( MAX( 1, N ) )
 | |
| *
 | |
|          DO 180 JWIDTH = 1, NWDTHS
 | |
|             K = KK( JWIDTH )
 | |
|             IF( K.GT.N )
 | |
|      $         GO TO 180
 | |
|             K = MAX( 0, MIN( N-1, K ) )
 | |
| *
 | |
|             IF( NSIZES.NE.1 ) THEN
 | |
|                MTYPES = MIN( MAXTYP, NTYPES )
 | |
|             ELSE
 | |
|                MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|             END IF
 | |
| *
 | |
|             DO 170 JTYPE = 1, MTYPES
 | |
|                IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $            GO TO 170
 | |
|                NMATS = NMATS + 1
 | |
|                NTEST = 0
 | |
| *
 | |
|                DO 30 J = 1, 4
 | |
|                   IOLDSD( J ) = ISEED( J )
 | |
|    30          CONTINUE
 | |
| *
 | |
| *              Compute "A".
 | |
| *              Store as "Upper"; later, we will copy to other format.
 | |
| *
 | |
| *              Control parameters:
 | |
| *
 | |
| *                  KMAGN  KMODE        KTYPE
 | |
| *              =1  O(1)   clustered 1  zero
 | |
| *              =2  large  clustered 2  identity
 | |
| *              =3  small  exponential  (none)
 | |
| *              =4         arithmetic   diagonal, (w/ eigenvalues)
 | |
| *              =5         random log   symmetric, w/ eigenvalues
 | |
| *              =6         random       (none)
 | |
| *              =7                      random diagonal
 | |
| *              =8                      random symmetric
 | |
| *              =9                      positive definite
 | |
| *              =10                     diagonally dominant tridiagonal
 | |
| *
 | |
|                IF( MTYPES.GT.MAXTYP )
 | |
|      $            GO TO 100
 | |
| *
 | |
|                ITYPE = KTYPE( JTYPE )
 | |
|                IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *              Compute norm
 | |
| *
 | |
|                GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | |
| *
 | |
|    40          CONTINUE
 | |
|                ANORM = ONE
 | |
|                GO TO 70
 | |
| *
 | |
|    50          CONTINUE
 | |
|                ANORM = ( RTOVFL*ULP )*ANINV
 | |
|                GO TO 70
 | |
| *
 | |
|    60          CONTINUE
 | |
|                ANORM = RTUNFL*N*ULPINV
 | |
|                GO TO 70
 | |
| *
 | |
|    70          CONTINUE
 | |
| *
 | |
|                CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | |
|                IINFO = 0
 | |
|                IF( JTYPE.LE.15 ) THEN
 | |
|                   COND = ULPINV
 | |
|                ELSE
 | |
|                   COND = ULPINV*ANINV / TEN
 | |
|                END IF
 | |
| *
 | |
| *              Special Matrices -- Identity & Jordan block
 | |
| *
 | |
| *                 Zero
 | |
| *
 | |
|                IF( ITYPE.EQ.1 ) THEN
 | |
|                   IINFO = 0
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *                 Identity
 | |
| *
 | |
|                   DO 80 JCOL = 1, N
 | |
|                      A( K+1, JCOL ) = ANORM
 | |
|    80             CONTINUE
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *                 Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                   CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                         ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
 | |
|      $                         WORK( N+1 ), IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *                 Symmetric, eigenvalues specified
 | |
| *
 | |
|                   CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | |
|      $                         ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
 | |
|      $                         IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *                 Diagonal, random eigenvalues
 | |
| *
 | |
|                   CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                         'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                         WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                         ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
 | |
|      $                         IDUMMA, IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *                 Symmetric, random eigenvalues
 | |
| *
 | |
|                   CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | |
|      $                         'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                         WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
 | |
|      $                         ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *                 Positive definite, eigenvalues specified.
 | |
| *
 | |
|                   CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
 | |
|      $                         ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
 | |
|      $                         IINFO )
 | |
| *
 | |
|                ELSE IF( ITYPE.EQ.10 ) THEN
 | |
| *
 | |
| *                 Positive definite tridiagonal, eigenvalues specified.
 | |
| *
 | |
|                   IF( N.GT.1 )
 | |
|      $               K = MAX( 1, K )
 | |
|                   CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
 | |
|      $                         ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
 | |
|      $                         WORK( N+1 ), IINFO )
 | |
|                   DO 90 I = 2, N
 | |
|                      TEMP1 = ABS( A( K, I ) ) /
 | |
|      $                       SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
 | |
|                      IF( TEMP1.GT.HALF ) THEN
 | |
|                         A( K, I ) = HALF*SQRT( ABS( A( K+1,
 | |
|      $                              I-1 )*A( K+1, I ) ) )
 | |
|                      END IF
 | |
|    90             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
|                   IINFO = 1
 | |
|                END IF
 | |
| *
 | |
|                IF( IINFO.NE.0 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
 | |
|      $               JTYPE, IOLDSD
 | |
|                   INFO = ABS( IINFO )
 | |
|                   RETURN
 | |
|                END IF
 | |
| *
 | |
|   100          CONTINUE
 | |
| *
 | |
| *              Call DSBTRD to compute S and U from upper triangle.
 | |
| *
 | |
|                CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
 | |
| *
 | |
|                NTEST = 1
 | |
|                CALL DSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
 | |
|      $                      WORK( LDA*N+1 ), IINFO )
 | |
| *
 | |
|                IF( IINFO.NE.0 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )'DSBTRD(U)', IINFO, N,
 | |
|      $               JTYPE, IOLDSD
 | |
|                   INFO = ABS( IINFO )
 | |
|                   IF( IINFO.LT.0 ) THEN
 | |
|                      RETURN
 | |
|                   ELSE
 | |
|                      RESULT( 1 ) = ULPINV
 | |
|                      GO TO 150
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              Do tests 1 and 2
 | |
| *
 | |
|                CALL DSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
 | |
|      $                      WORK, RESULT( 1 ) )
 | |
| *
 | |
| *              Convert A from Upper-Triangle-Only storage to
 | |
| *              Lower-Triangle-Only storage.
 | |
| *
 | |
|                DO 120 JC = 1, N
 | |
|                   DO 110 JR = 0, MIN( K, N-JC )
 | |
|                      A( JR+1, JC ) = A( K+1-JR, JC+JR )
 | |
|   110             CONTINUE
 | |
|   120          CONTINUE
 | |
|                DO 140 JC = N + 1 - K, N
 | |
|                   DO 130 JR = MIN( K, N-JC ) + 1, K
 | |
|                      A( JR+1, JC ) = ZERO
 | |
|   130             CONTINUE
 | |
|   140          CONTINUE
 | |
| *
 | |
| *              Call DSBTRD to compute S and U from lower triangle
 | |
| *
 | |
|                CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
 | |
| *
 | |
|                NTEST = 3
 | |
|                CALL DSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
 | |
|      $                      WORK( LDA*N+1 ), IINFO )
 | |
| *
 | |
|                IF( IINFO.NE.0 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )'DSBTRD(L)', IINFO, N,
 | |
|      $               JTYPE, IOLDSD
 | |
|                   INFO = ABS( IINFO )
 | |
|                   IF( IINFO.LT.0 ) THEN
 | |
|                      RETURN
 | |
|                   ELSE
 | |
|                      RESULT( 3 ) = ULPINV
 | |
|                      GO TO 150
 | |
|                   END IF
 | |
|                END IF
 | |
|                NTEST = 4
 | |
| *
 | |
| *              Do tests 3 and 4
 | |
| *
 | |
|                CALL DSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
 | |
|      $                      WORK, RESULT( 3 ) )
 | |
| *
 | |
| *              End of Loop -- Check for RESULT(j) > THRESH
 | |
| *
 | |
|   150          CONTINUE
 | |
|                NTESTT = NTESTT + NTEST
 | |
| *
 | |
| *              Print out tests which fail.
 | |
| *
 | |
|                DO 160 JR = 1, NTEST
 | |
|                   IF( RESULT( JR ).GE.THRESH ) THEN
 | |
| *
 | |
| *                    If this is the first test to fail,
 | |
| *                    print a header to the data file.
 | |
| *
 | |
|                      IF( NERRS.EQ.0 ) THEN
 | |
|                         WRITE( NOUNIT, FMT = 9998 )'DSB'
 | |
|                         WRITE( NOUNIT, FMT = 9997 )
 | |
|                         WRITE( NOUNIT, FMT = 9996 )
 | |
|                         WRITE( NOUNIT, FMT = 9995 )'Symmetric'
 | |
|                         WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
 | |
|      $                     'transpose', ( '''', J = 1, 4 )
 | |
|                      END IF
 | |
|                      NERRS = NERRS + 1
 | |
|                      WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
 | |
|      $                  JR, RESULT( JR )
 | |
|                   END IF
 | |
|   160          CONTINUE
 | |
| *
 | |
|   170       CONTINUE
 | |
|   180    CONTINUE
 | |
|   190 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( ' DCHKSB: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
|  9998 FORMAT( / 1X, A3,
 | |
|      $      ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
 | |
|  9997 FORMAT( ' Matrix types (see DCHKSB for details): ' )
 | |
| *
 | |
|  9996 FORMAT( / ' Special Matrices:',
 | |
|      $      / '  1=Zero matrix.                        ',
 | |
|      $      '  5=Diagonal: clustered entries.',
 | |
|      $      / '  2=Identity matrix.                    ',
 | |
|      $      '  6=Diagonal: large, evenly spaced.',
 | |
|      $      / '  3=Diagonal: evenly spaced entries.    ',
 | |
|      $      '  7=Diagonal: small, evenly spaced.',
 | |
|      $      / '  4=Diagonal: geometr. spaced entries.' )
 | |
|  9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
 | |
|      $      / '  8=Evenly spaced eigenvals.            ',
 | |
|      $      ' 12=Small, evenly spaced eigenvals.',
 | |
|      $      / '  9=Geometrically spaced eigenvals.     ',
 | |
|      $      ' 13=Matrix with random O(1) entries.',
 | |
|      $      / ' 10=Clustered eigenvalues.              ',
 | |
|      $      ' 14=Matrix with large random entries.',
 | |
|      $      / ' 11=Large, evenly spaced eigenvals.     ',
 | |
|      $      ' 15=Matrix with small random entries.' )
 | |
| *
 | |
|  9994 FORMAT( / ' Tests performed:   (S is Tridiag,  U is ', A, ',',
 | |
|      $      / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
 | |
|      $      / '  1= | A - U S U', A1, ' | / ( |A| n ulp )     ',
 | |
|      $      '  2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
 | |
|      $      / '  3= | A - U S U', A1, ' | / ( |A| n ulp )     ',
 | |
|      $      '  4= | I - U U', A1, ' | / ( n ulp )' )
 | |
|  9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
 | |
|      $      I2, ', test(', I2, ')=', G10.3 )
 | |
| *
 | |
| *     End of DCHKSB
 | |
| *
 | |
|       END
 |