217 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPBT02
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB,
 | |
| *                          RWORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            KD, LDA, LDB, LDX, N, NRHS
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPBT02 computes the residual for a solution of a Hermitian banded
 | |
| *> system of equations  A*x = b:
 | |
| *>    RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS)
 | |
| *> where EPS is the machine precision.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides. NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The original Hermitian band matrix A.  If UPLO = 'U', the
 | |
| *>          upper triangular part of A is stored as a band matrix; if
 | |
| *>          UPLO = 'L', the lower triangular part of A is stored.  The
 | |
| *>          columns of the appropriate triangle are stored in the columns
 | |
| *>          of A and the diagonals of the triangle are stored in the rows
 | |
| *>          of A.  See ZPBTRF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER.
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,KD+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.   LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side vectors for the system of
 | |
| *>          linear equations.
 | |
| *>          On exit, B is overwritten with the difference B - A*X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The maximum over the number of right hand sides of
 | |
| *>          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB,
 | |
|      $                   RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            KD, LDA, LDB, LDX, N, NRHS
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CONE
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J
 | |
|       DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DZASUM, ZLANHB
 | |
|       EXTERNAL           DLAMCH, DZASUM, ZLANHB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZHBMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0 or NRHS = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute  B - A*X
 | |
| *
 | |
|       DO 10 J = 1, NRHS
 | |
|          CALL ZHBMV( UPLO, N, KD, -CONE, A, LDA, X( 1, J ), 1, CONE,
 | |
|      $               B( 1, J ), 1 )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute the maximum over the number of right hand sides of
 | |
| *          norm( B - A*X ) / ( norm(A) * norm(X) * EPS )
 | |
| *
 | |
|       RESID = ZERO
 | |
|       DO 20 J = 1, NRHS
 | |
|          BNORM = DZASUM( N, B( 1, J ), 1 )
 | |
|          XNORM = DZASUM( N, X( 1, J ), 1 )
 | |
|          IF( XNORM.LE.ZERO ) THEN
 | |
|             RESID = ONE / EPS
 | |
|          ELSE
 | |
|             RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPBT02
 | |
| *
 | |
|       END
 |