1335 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1335 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b18 = .001;
 | |
| 
 | |
| /* > \brief \b DSTEMR */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DSTEMR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstemr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstemr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstemr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
 | |
| /*                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
 | |
| /*                          IWORK, LIWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBZ, RANGE */
 | |
| /*       LOGICAL            TRYRAC */
 | |
| /*       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
 | |
| /*       DOUBLE PRECISION VL, VU */
 | |
| /*       INTEGER            ISUPPZ( * ), IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ) */
 | |
| /*       DOUBLE PRECISION   Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DSTEMR computes selected eigenvalues and, optionally, eigenvectors */
 | |
| /* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
 | |
| /* > a well defined set of pairwise different real eigenvalues, the corresponding */
 | |
| /* > real eigenvectors are pairwise orthogonal. */
 | |
| /* > */
 | |
| /* > The spectrum may be computed either completely or partially by specifying */
 | |
| /* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
 | |
| /* > eigenvalues. */
 | |
| /* > */
 | |
| /* > Depending on the number of desired eigenvalues, these are computed either */
 | |
| /* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
 | |
| /* > computed by the use of various suitable L D L^T factorizations near clusters */
 | |
| /* > of close eigenvalues (referred to as RRRs, Relatively Robust */
 | |
| /* > Representations). An informal sketch of the algorithm follows. */
 | |
| /* > */
 | |
| /* > For each unreduced block (submatrix) of T, */
 | |
| /* >    (a) Compute T - sigma I  = L D L^T, so that L and D */
 | |
| /* >        define all the wanted eigenvalues to high relative accuracy. */
 | |
| /* >        This means that small relative changes in the entries of D and L */
 | |
| /* >        cause only small relative changes in the eigenvalues and */
 | |
| /* >        eigenvectors. The standard (unfactored) representation of the */
 | |
| /* >        tridiagonal matrix T does not have this property in general. */
 | |
| /* >    (b) Compute the eigenvalues to suitable accuracy. */
 | |
| /* >        If the eigenvectors are desired, the algorithm attains full */
 | |
| /* >        accuracy of the computed eigenvalues only right before */
 | |
| /* >        the corresponding vectors have to be computed, see steps c) and d). */
 | |
| /* >    (c) For each cluster of close eigenvalues, select a new */
 | |
| /* >        shift close to the cluster, find a new factorization, and refine */
 | |
| /* >        the shifted eigenvalues to suitable accuracy. */
 | |
| /* >    (d) For each eigenvalue with a large enough relative separation compute */
 | |
| /* >        the corresponding eigenvector by forming a rank revealing twisted */
 | |
| /* >        factorization. Go back to (c) for any clusters that remain. */
 | |
| /* > */
 | |
| /* > For more details, see: */
 | |
| /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
 | |
| /* >   to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
 | |
| /* >   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
 | |
| /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
 | |
| /* >   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
 | |
| /* >   2004.  Also LAPACK Working Note 154. */
 | |
| /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
 | |
| /* >   tridiagonal eigenvalue/eigenvector problem", */
 | |
| /* >   Computer Science Division Technical Report No. UCB/CSD-97-971, */
 | |
| /* >   UC Berkeley, May 1997. */
 | |
| /* > */
 | |
| /* > Further Details */
 | |
| /* > 1.DSTEMR works only on machines which follow IEEE-754 */
 | |
| /* > floating-point standard in their handling of infinities and NaNs. */
 | |
| /* > This permits the use of efficient inner loops avoiding a check for */
 | |
| /* > zero divisors. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBZ */
 | |
| /* > \verbatim */
 | |
| /* >          JOBZ is CHARACTER*1 */
 | |
| /* >          = 'N':  Compute eigenvalues only; */
 | |
| /* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': all eigenvalues will be found. */
 | |
| /* >          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | |
| /* >                 will be found. */
 | |
| /* >          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On entry, the N diagonal elements of the tridiagonal matrix */
 | |
| /* >          T. On exit, D is overwritten. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On entry, the (N-1) subdiagonal elements of the tridiagonal */
 | |
| /* >          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
 | |
| /* >          input, but is used internally as workspace. */
 | |
| /* >          On exit, E is overwritten. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          If RANGE='V', the lower bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          If RANGE='V', the upper bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* > */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* > */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The total number of eigenvalues found.  0 <= M <= N. */
 | |
| /* >          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The first M elements contain the selected eigenvalues in */
 | |
| /* >          ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M) ) */
 | |
| /* >          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
 | |
| /* >          contain the orthonormal eigenvectors of the matrix T */
 | |
| /* >          corresponding to the selected eigenvalues, with the i-th */
 | |
| /* >          column of Z holding the eigenvector associated with W(i). */
 | |
| /* >          If JOBZ = 'N', then Z is not referenced. */
 | |
| /* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | |
| /* >          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | |
| /* >          is not known in advance and can be computed with a workspace */
 | |
| /* >          query by setting NZC = -1, see below. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | |
| /* >          JOBZ = 'V', then LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NZC */
 | |
| /* > \verbatim */
 | |
| /* >          NZC is INTEGER */
 | |
| /* >          The number of eigenvectors to be held in the array Z. */
 | |
| /* >          If RANGE = 'A', then NZC >= f2cmax(1,N). */
 | |
| /* >          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
 | |
| /* >          If RANGE = 'I', then NZC >= IU-IL+1. */
 | |
| /* >          If NZC = -1, then a workspace query is assumed; the */
 | |
| /* >          routine calculates the number of columns of the array Z that */
 | |
| /* >          are needed to hold the eigenvectors. */
 | |
| /* >          This value is returned as the first entry of the Z array, and */
 | |
| /* >          no error message related to NZC is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISUPPZ */
 | |
| /* > \verbatim */
 | |
| /* >          ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
 | |
| /* >          The support of the eigenvectors in Z, i.e., the indices */
 | |
| /* >          indicating the nonzero elements in Z. The i-th computed eigenvector */
 | |
| /* >          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 | |
| /* >          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
 | |
| /* >          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] TRYRAC */
 | |
| /* > \verbatim */
 | |
| /* >          TRYRAC is LOGICAL */
 | |
| /* >          If TRYRAC = .TRUE., indicates that the code should check whether */
 | |
| /* >          the tridiagonal matrix defines its eigenvalues to high relative */
 | |
| /* >          accuracy.  If so, the code uses relative-accuracy preserving */
 | |
| /* >          algorithms that might be (a bit) slower depending on the matrix. */
 | |
| /* >          If the matrix does not define its eigenvalues to high relative */
 | |
| /* >          accuracy, the code can uses possibly faster algorithms. */
 | |
| /* >          If TRYRAC = .FALSE., the code is not required to guarantee */
 | |
| /* >          relatively accurate eigenvalues and can use the fastest possible */
 | |
| /* >          techniques. */
 | |
| /* >          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
 | |
| /* >          does not define its eigenvalues to high relative accuracy. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LWORK) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal */
 | |
| /* >          (and minimal) LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
 | |
| /* >          if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (LIWORK) */
 | |
| /* >          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LIWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LIWORK is INTEGER */
 | |
| /* >          The dimension of the array IWORK.  LIWORK >= f2cmax(1,10*N) */
 | |
| /* >          if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
 | |
| /* >          if only the eigenvalues are to be computed. */
 | |
| /* >          If LIWORK = -1, then a workspace query is assumed; the */
 | |
| /* >          routine only calculates the optimal size of the IWORK array, */
 | |
| /* >          returns this value as the first entry of the IWORK array, and */
 | |
| /* >          no error message related to LIWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          On exit, INFO */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  if INFO = 1X, internal error in DLARRE, */
 | |
| /* >                if INFO = 2X, internal error in DLARRV. */
 | |
| /* >                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
 | |
| /* >                the nonzero error code returned by DLARRE or */
 | |
| /* >                DLARRV, respectively. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* > Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* > Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* > Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dstemr_(char *jobz, char *range, integer *n, doublereal *
 | |
| 	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
 | |
| 	integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz,
 | |
| 	 integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, 
 | |
| 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer z_dim1, z_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer indd, iend, jblk, wend;
 | |
|     doublereal rmin, rmax;
 | |
|     integer itmp;
 | |
|     doublereal tnrm;
 | |
|     extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal 
 | |
| 	    *, doublereal *, doublereal *);
 | |
|     integer inde2, itmp2;
 | |
|     doublereal rtol1, rtol2;
 | |
|     integer i__, j;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal scale;
 | |
|     integer indgp;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo, iindw, ilast;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
 | |
| 	    *, doublereal *, integer *);
 | |
|     integer lwmin;
 | |
|     logical wantz;
 | |
|     doublereal r1, r2;
 | |
|     extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *);
 | |
|     integer jj;
 | |
|     doublereal cs;
 | |
|     integer in;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     logical alleig, indeig;
 | |
|     integer ibegin, iindbl;
 | |
|     doublereal sn, wl;
 | |
|     logical valeig;
 | |
|     extern /* Subroutine */ void dlarrc_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | |
| 	     integer *, integer *, integer *), dlarre_(char *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *);
 | |
|     integer wbegin;
 | |
|     doublereal safmin, wu;
 | |
|     extern /* Subroutine */ void dlarrj_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
 | |
| 	     integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal bignum;
 | |
|     integer inderr, iindwk, indgrs, offset;
 | |
|     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ void dlarrr_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *), dlarrv_(integer *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *), dlasrt_(char *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal thresh;
 | |
|     integer iinspl, ifirst, indwrk, liwmin, nzcmin;
 | |
|     doublereal pivmin;
 | |
|     integer nsplit;
 | |
|     doublereal smlnum;
 | |
|     logical lquery, zquery;
 | |
|     integer iil, iiu;
 | |
|     doublereal eps, tmp;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --e;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --isuppz;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantz = lsame_(jobz, "V");
 | |
|     alleig = lsame_(range, "A");
 | |
|     valeig = lsame_(range, "V");
 | |
|     indeig = lsame_(range, "I");
 | |
| 
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
|     zquery = *nzc == -1;
 | |
| /*     DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
 | |
| /*     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
 | |
| /*     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
 | |
|     if (wantz) {
 | |
| 	lwmin = *n * 18;
 | |
| 	liwmin = *n * 10;
 | |
|     } else {
 | |
| /*        need less workspace if only the eigenvalues are wanted */
 | |
| 	lwmin = *n * 12;
 | |
| 	liwmin = *n << 3;
 | |
|     }
 | |
|     wl = 0.;
 | |
|     wu = 0.;
 | |
|     iil = 0;
 | |
|     iiu = 0;
 | |
|     nsplit = 0;
 | |
|     if (valeig) {
 | |
| /*        We do not reference VL, VU in the cases RANGE = 'I','A' */
 | |
| /*        The interval (WL, WU] contains all the wanted eigenvalues. */
 | |
| /*        It is either given by the user or computed in DLARRE. */
 | |
| 	wl = *vl;
 | |
| 	wu = *vu;
 | |
|     } else if (indeig) {
 | |
| /*        We do not reference IL, IU in the cases RANGE = 'V','A' */
 | |
| 	iil = *il;
 | |
| 	iiu = *iu;
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! (wantz || lsame_(jobz, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (alleig || valeig || indeig)) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (valeig && *n > 0 && wu <= wl) {
 | |
| 	*info = -7;
 | |
|     } else if (indeig && (iil < 1 || iil > *n)) {
 | |
| 	*info = -8;
 | |
|     } else if (indeig && (iiu < iil || iiu > *n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldz < 1 || wantz && *ldz < *n) {
 | |
| 	*info = -13;
 | |
|     } else if (*lwork < lwmin && ! lquery) {
 | |
| 	*info = -17;
 | |
|     } else if (*liwork < liwmin && ! lquery) {
 | |
| 	*info = -19;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants. */
 | |
| 
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     eps = dlamch_("Precision");
 | |
|     smlnum = safmin / eps;
 | |
|     bignum = 1. / smlnum;
 | |
|     rmin = sqrt(smlnum);
 | |
| /* Computing MIN */
 | |
|     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 | |
|     rmax = f2cmin(d__1,d__2);
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	work[1] = (doublereal) lwmin;
 | |
| 	iwork[1] = liwmin;
 | |
| 
 | |
| 	if (wantz && alleig) {
 | |
| 	    nzcmin = *n;
 | |
| 	} else if (wantz && valeig) {
 | |
| 	    dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
 | |
| 		    itmp2, info);
 | |
| 	} else if (wantz && indeig) {
 | |
| 	    nzcmin = iiu - iil + 1;
 | |
| 	} else {
 | |
| /*           WANTZ .EQ. FALSE. */
 | |
| 	    nzcmin = 0;
 | |
| 	}
 | |
| 	if (zquery && *info == 0) {
 | |
| 	    z__[z_dim1 + 1] = (doublereal) nzcmin;
 | |
| 	} else if (*nzc < nzcmin && ! zquery) {
 | |
| 	    *info = -14;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSTEMR", &i__1, (ftnlen)6);
 | |
| 
 | |
| 	return;
 | |
|     } else if (lquery || zquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Handle N = 0, 1, and 2 cases immediately */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	if (alleig || indeig) {
 | |
| 	    *m = 1;
 | |
| 	    w[1] = d__[1];
 | |
| 	} else {
 | |
| 	    if (wl < d__[1] && wu >= d__[1]) {
 | |
| 		*m = 1;
 | |
| 		w[1] = d__[1];
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wantz && ! zquery) {
 | |
| 	    z__[z_dim1 + 1] = 1.;
 | |
| 	    isuppz[1] = 1;
 | |
| 	    isuppz[2] = 1;
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*n == 2) {
 | |
| 	if (! wantz) {
 | |
| 	    dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
 | |
| 	} else if (wantz && ! zquery) {
 | |
| 	    dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
 | |
| 	}
 | |
| 	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
 | |
| 	    ++(*m);
 | |
| 	    w[*m] = r2;
 | |
| 	    if (wantz && ! zquery) {
 | |
| 		z__[*m * z_dim1 + 1] = -sn;
 | |
| 		z__[*m * z_dim1 + 2] = cs;
 | |
| /*              Note: At most one of SN and CS can be zero. */
 | |
| 		if (sn != 0.) {
 | |
| 		    if (cs != 0.) {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[*m * 2] = 2;
 | |
| 		    } else {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[*m * 2] = 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    isuppz[(*m << 1) - 1] = 2;
 | |
| 		    isuppz[*m * 2] = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
 | |
| 	    ++(*m);
 | |
| 	    w[*m] = r1;
 | |
| 	    if (wantz && ! zquery) {
 | |
| 		z__[*m * z_dim1 + 1] = cs;
 | |
| 		z__[*m * z_dim1 + 2] = sn;
 | |
| /*              Note: At most one of SN and CS can be zero. */
 | |
| 		if (sn != 0.) {
 | |
| 		    if (cs != 0.) {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[*m * 2] = 2;
 | |
| 		    } else {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[*m * 2] = 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    isuppz[(*m << 1) - 1] = 2;
 | |
| 		    isuppz[*m * 2] = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| /*     Continue with general N */
 | |
| 	indgrs = 1;
 | |
| 	inderr = (*n << 1) + 1;
 | |
| 	indgp = *n * 3 + 1;
 | |
| 	indd = (*n << 2) + 1;
 | |
| 	inde2 = *n * 5 + 1;
 | |
| 	indwrk = *n * 6 + 1;
 | |
| 
 | |
| 	iinspl = 1;
 | |
| 	iindbl = *n + 1;
 | |
| 	iindw = (*n << 1) + 1;
 | |
| 	iindwk = *n * 3 + 1;
 | |
| 
 | |
| /*        Scale matrix to allowable range, if necessary. */
 | |
| /*        The allowable range is related to the PIVMIN parameter; see the */
 | |
| /*        comments in DLARRD.  The preference for scaling small values */
 | |
| /*        up is heuristic; we expect users' matrices not to be close to the */
 | |
| /*        RMAX threshold. */
 | |
| 
 | |
| 	scale = 1.;
 | |
| 	tnrm = dlanst_("M", n, &d__[1], &e[1]);
 | |
| 	if (tnrm > 0. && tnrm < rmin) {
 | |
| 	    scale = rmin / tnrm;
 | |
| 	} else if (tnrm > rmax) {
 | |
| 	    scale = rmax / tnrm;
 | |
| 	}
 | |
| 	if (scale != 1.) {
 | |
| 	    dscal_(n, &scale, &d__[1], &c__1);
 | |
| 	    i__1 = *n - 1;
 | |
| 	    dscal_(&i__1, &scale, &e[1], &c__1);
 | |
| 	    tnrm *= scale;
 | |
| 	    if (valeig) {
 | |
| /*              If eigenvalues in interval have to be found, */
 | |
| /*              scale (WL, WU] accordingly */
 | |
| 		wl *= scale;
 | |
| 		wu *= scale;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Compute the desired eigenvalues of the tridiagonal after splitting */
 | |
| /*        into smaller subblocks if the corresponding off-diagonal elements */
 | |
| /*        are small */
 | |
| /*        THRESH is the splitting parameter for DLARRE */
 | |
| /*        A negative THRESH forces the old splitting criterion based on the */
 | |
| /*        size of the off-diagonal. A positive THRESH switches to splitting */
 | |
| /*        which preserves relative accuracy. */
 | |
| 
 | |
| 	if (*tryrac) {
 | |
| /*           Test whether the matrix warrants the more expensive relative approach. */
 | |
| 	    dlarrr_(n, &d__[1], &e[1], &iinfo);
 | |
| 	} else {
 | |
| /*           The user does not care about relative accurately eigenvalues */
 | |
| 	    iinfo = -1;
 | |
| 	}
 | |
| /*        Set the splitting criterion */
 | |
| 	if (iinfo == 0) {
 | |
| 	    thresh = eps;
 | |
| 	} else {
 | |
| 	    thresh = -eps;
 | |
| /*           relative accuracy is desired but T does not guarantee it */
 | |
| 	    *tryrac = FALSE_;
 | |
| 	}
 | |
| 
 | |
| 	if (*tryrac) {
 | |
| /*           Copy original diagonal, needed to guarantee relative accuracy */
 | |
| 	    dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
 | |
| 	}
 | |
| /*        Store the squares of the offdiagonal values of T */
 | |
| 	i__1 = *n - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing 2nd power */
 | |
| 	    d__1 = e[j];
 | |
| 	    work[inde2 + j - 1] = d__1 * d__1;
 | |
| /* L5: */
 | |
| 	}
 | |
| /*        Set the tolerance parameters for bisection */
 | |
| 	if (! wantz) {
 | |
| /*           DLARRE computes the eigenvalues to full precision. */
 | |
| 	    rtol1 = eps * 4.;
 | |
| 	    rtol2 = eps * 4.;
 | |
| 	} else {
 | |
| /*           DLARRE computes the eigenvalues to less than full precision. */
 | |
| /*           DLARRV will refine the eigenvalue approximations, and we can */
 | |
| /*           need less accurate initial bisection in DLARRE. */
 | |
| /*           Note: these settings do only affect the subset case and DLARRE */
 | |
| 	    rtol1 = sqrt(eps);
 | |
| /* Computing MAX */
 | |
| 	    d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
 | |
| 	    rtol2 = f2cmax(d__1,d__2);
 | |
| 	}
 | |
| 	dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], 
 | |
| 		&rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
 | |
| 		work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
 | |
| 		work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = abs(iinfo) + 10;
 | |
| 	    return;
 | |
| 	}
 | |
| /*        Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
 | |
| /*        part of the spectrum. All desired eigenvalues are contained in */
 | |
| /*        (WL,WU] */
 | |
| 	if (wantz) {
 | |
| 
 | |
| /*           Compute the desired eigenvectors corresponding to the computed */
 | |
| /*           eigenvalues */
 | |
| 
 | |
| 	    dlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
 | |
| 		    c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
 | |
| 		    work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
 | |
| 		     &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
 | |
| 		    iindwk], &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = abs(iinfo) + 20;
 | |
| 		return;
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           DLARRE computes eigenvalues of the (shifted) root representation */
 | |
| /*           DLARRV returns the eigenvalues of the unshifted matrix. */
 | |
| /*           However, if the eigenvectors are not desired by the user, we need */
 | |
| /*           to apply the corresponding shifts from DLARRE to obtain the */
 | |
| /*           eigenvalues of the original matrix. */
 | |
| 	    i__1 = *m;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		itmp = iwork[iindbl + j - 1];
 | |
| 		w[j] += e[iwork[iinspl + itmp - 1]];
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (*tryrac) {
 | |
| /*           Refine computed eigenvalues so that they are relatively accurate */
 | |
| /*           with respect to the original matrix T. */
 | |
| 	    ibegin = 1;
 | |
| 	    wbegin = 1;
 | |
| 	    i__1 = iwork[iindbl + *m - 1];
 | |
| 	    for (jblk = 1; jblk <= i__1; ++jblk) {
 | |
| 		iend = iwork[iinspl + jblk - 1];
 | |
| 		in = iend - ibegin + 1;
 | |
| 		wend = wbegin - 1;
 | |
| /*              check if any eigenvalues have to be refined in this block */
 | |
| L36:
 | |
| 		if (wend < *m) {
 | |
| 		    if (iwork[iindbl + wend] == jblk) {
 | |
| 			++wend;
 | |
| 			goto L36;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (wend < wbegin) {
 | |
| 		    ibegin = iend + 1;
 | |
| 		    goto L39;
 | |
| 		}
 | |
| 		offset = iwork[iindw + wbegin - 1] - 1;
 | |
| 		ifirst = iwork[iindw + wbegin - 1];
 | |
| 		ilast = iwork[iindw + wend - 1];
 | |
| 		rtol2 = eps * 4.;
 | |
| 		dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 
 | |
| 			1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
 | |
| 			work[inderr + wbegin - 1], &work[indwrk], &iwork[
 | |
| 			iindwk], &pivmin, &tnrm, &iinfo);
 | |
| 		ibegin = iend + 1;
 | |
| 		wbegin = wend + 1;
 | |
| L39:
 | |
| 		;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        If matrix was scaled, then rescale eigenvalues appropriately. */
 | |
| 
 | |
| 	if (scale != 1.) {
 | |
| 	    d__1 = 1. / scale;
 | |
| 	    dscal_(m, &d__1, &w[1], &c__1);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If eigenvalues are not in increasing order, then sort them, */
 | |
| /*     possibly along with eigenvectors. */
 | |
| 
 | |
|     if (nsplit > 1 || *n == 2) {
 | |
| 	if (! wantz) {
 | |
| 	    dlasrt_("I", m, &w[1], &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = 3;
 | |
| 		return;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *m - 1;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__ = 0;
 | |
| 		tmp = w[j];
 | |
| 		i__2 = *m;
 | |
| 		for (jj = j + 1; jj <= i__2; ++jj) {
 | |
| 		    if (w[jj] < tmp) {
 | |
| 			i__ = jj;
 | |
| 			tmp = w[jj];
 | |
| 		    }
 | |
| /* L50: */
 | |
| 		}
 | |
| 		if (i__ != 0) {
 | |
| 		    w[i__] = w[j];
 | |
| 		    w[j] = tmp;
 | |
| 		    if (wantz) {
 | |
| 			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 
 | |
| 				z_dim1 + 1], &c__1);
 | |
| 			itmp = isuppz[(i__ << 1) - 1];
 | |
| 			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
 | |
| 			isuppz[(j << 1) - 1] = itmp;
 | |
| 			itmp = isuppz[i__ * 2];
 | |
| 			isuppz[i__ * 2] = isuppz[j * 2];
 | |
| 			isuppz[j * 2] = itmp;
 | |
| 		    }
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|     work[1] = (doublereal) lwmin;
 | |
|     iwork[1] = liwmin;
 | |
|     return;
 | |
| 
 | |
| /*     End of DSTEMR */
 | |
| 
 | |
| } /* dstemr_ */
 | |
| 
 |