1022 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1022 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DDRGSX
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B, AI,
 | 
						|
*                          BI, Z, Q, ALPHAR, ALPHAI, BETA, C, LDC, S,
 | 
						|
*                          WORK, LWORK, IWORK, LIWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
 | 
						|
*      $                   NOUT, NSIZE
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            BWORK( * )
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), AI( LDA, * ), ALPHAI( * ),
 | 
						|
*      $                   ALPHAR( * ), B( LDA, * ), BETA( * ),
 | 
						|
*      $                   BI( LDA, * ), C( LDC, * ), Q( LDA, * ), S( * ),
 | 
						|
*      $                   WORK( * ), Z( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DDRGSX checks the nonsymmetric generalized eigenvalue (Schur form)
 | 
						|
*> problem expert driver DGGESX.
 | 
						|
*>
 | 
						|
*> DGGESX factors A and B as Q S Z' and Q T Z', where ' means
 | 
						|
*> transpose, T is upper triangular, S is in generalized Schur form
 | 
						|
*> (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,
 | 
						|
*> the 2x2 blocks corresponding to complex conjugate pairs of
 | 
						|
*> generalized eigenvalues), and Q and Z are orthogonal.  It also
 | 
						|
*> computes the generalized eigenvalues (alpha(1),beta(1)), ...,
 | 
						|
*> (alpha(n),beta(n)). Thus, w(j) = alpha(j)/beta(j) is a root of the
 | 
						|
*> characteristic equation
 | 
						|
*>
 | 
						|
*>     det( A - w(j) B ) = 0
 | 
						|
*>
 | 
						|
*> Optionally it also reorders the eigenvalues so that a selected
 | 
						|
*> cluster of eigenvalues appears in the leading diagonal block of the
 | 
						|
*> Schur forms; computes a reciprocal condition number for the average
 | 
						|
*> of the selected eigenvalues; and computes a reciprocal condition
 | 
						|
*> number for the right and left deflating subspaces corresponding to
 | 
						|
*> the selected eigenvalues.
 | 
						|
*>
 | 
						|
*> When DDRGSX is called with NSIZE > 0, five (5) types of built-in
 | 
						|
*> matrix pairs are used to test the routine DGGESX.
 | 
						|
*>
 | 
						|
*> When DDRGSX is called with NSIZE = 0, it reads in test matrix data
 | 
						|
*> to test DGGESX.
 | 
						|
*>
 | 
						|
*> For each matrix pair, the following tests will be performed and
 | 
						|
*> compared with the threshold THRESH except for the tests (7) and (9):
 | 
						|
*>
 | 
						|
*> (1)   | A - Q S Z' | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*> (2)   | B - Q T Z' | / ( |B| n ulp )
 | 
						|
*>
 | 
						|
*> (3)   | I - QQ' | / ( n ulp )
 | 
						|
*>
 | 
						|
*> (4)   | I - ZZ' | / ( n ulp )
 | 
						|
*>
 | 
						|
*> (5)   if A is in Schur form (i.e. quasi-triangular form)
 | 
						|
*>
 | 
						|
*> (6)   maximum over j of D(j)  where:
 | 
						|
*>
 | 
						|
*>       if alpha(j) is real:
 | 
						|
*>                     |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|
 | 
						|
*>           D(j) = ------------------------ + -----------------------
 | 
						|
*>                  max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)
 | 
						|
*>
 | 
						|
*>       if alpha(j) is complex:
 | 
						|
*>                                 | det( s S - w T ) |
 | 
						|
*>           D(j) = ---------------------------------------------------
 | 
						|
*>                  ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
 | 
						|
*>
 | 
						|
*>           and S and T are here the 2 x 2 diagonal blocks of S and T
 | 
						|
*>           corresponding to the j-th and j+1-th eigenvalues.
 | 
						|
*>
 | 
						|
*> (7)   if sorting worked and SDIM is the number of eigenvalues
 | 
						|
*>       which were selected.
 | 
						|
*>
 | 
						|
*> (8)   the estimated value DIF does not differ from the true values of
 | 
						|
*>       Difu and Difl more than a factor 10*THRESH. If the estimate DIF
 | 
						|
*>       equals zero the corresponding true values of Difu and Difl
 | 
						|
*>       should be less than EPS*norm(A, B). If the true value of Difu
 | 
						|
*>       and Difl equal zero, the estimate DIF should be less than
 | 
						|
*>       EPS*norm(A, B).
 | 
						|
*>
 | 
						|
*> (9)   If INFO = N+3 is returned by DGGESX, the reordering "failed"
 | 
						|
*>       and we check that DIF = PL = PR = 0 and that the true value of
 | 
						|
*>       Difu and Difl is < EPS*norm(A, B). We count the events when
 | 
						|
*>       INFO=N+3.
 | 
						|
*>
 | 
						|
*> For read-in test matrices, the above tests are run except that the
 | 
						|
*> exact value for DIF (and PL) is input data.  Additionally, there is
 | 
						|
*> one more test run for read-in test matrices:
 | 
						|
*>
 | 
						|
*> (10)  the estimated value PL does not differ from the true value of
 | 
						|
*>       PLTRU more than a factor THRESH. If the estimate PL equals
 | 
						|
*>       zero the corresponding true value of PLTRU should be less than
 | 
						|
*>       EPS*norm(A, B). If the true value of PLTRU equal zero, the
 | 
						|
*>       estimate PL should be less than EPS*norm(A, B).
 | 
						|
*>
 | 
						|
*> Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1)
 | 
						|
*> matrix pairs are generated and tested. NSIZE should be kept small.
 | 
						|
*>
 | 
						|
*> SVD (routine DGESVD) is used for computing the true value of DIF_u
 | 
						|
*> and DIF_l when testing the built-in test problems.
 | 
						|
*>
 | 
						|
*> Built-in Test Matrices
 | 
						|
*> ======================
 | 
						|
*>
 | 
						|
*> All built-in test matrices are the 2 by 2 block of triangular
 | 
						|
*> matrices
 | 
						|
*>
 | 
						|
*>          A = [ A11 A12 ]    and      B = [ B11 B12 ]
 | 
						|
*>              [     A22 ]                 [     B22 ]
 | 
						|
*>
 | 
						|
*> where for different type of A11 and A22 are given as the following.
 | 
						|
*> A12 and B12 are chosen so that the generalized Sylvester equation
 | 
						|
*>
 | 
						|
*>          A11*R - L*A22 = -A12
 | 
						|
*>          B11*R - L*B22 = -B12
 | 
						|
*>
 | 
						|
*> have prescribed solution R and L.
 | 
						|
*>
 | 
						|
*> Type 1:  A11 = J_m(1,-1) and A_22 = J_k(1-a,1).
 | 
						|
*>          B11 = I_m, B22 = I_k
 | 
						|
*>          where J_k(a,b) is the k-by-k Jordan block with ``a'' on
 | 
						|
*>          diagonal and ``b'' on superdiagonal.
 | 
						|
*>
 | 
						|
*> Type 2:  A11 = (a_ij) = ( 2(.5-sin(i)) ) and
 | 
						|
*>          B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m
 | 
						|
*>          A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and
 | 
						|
*>          B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k
 | 
						|
*>
 | 
						|
*> Type 3:  A11, A22 and B11, B22 are chosen as for Type 2, but each
 | 
						|
*>          second diagonal block in A_11 and each third diagonal block
 | 
						|
*>          in A_22 are made as 2 by 2 blocks.
 | 
						|
*>
 | 
						|
*> Type 4:  A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) )
 | 
						|
*>             for i=1,...,m,  j=1,...,m and
 | 
						|
*>          A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) )
 | 
						|
*>             for i=m+1,...,k,  j=m+1,...,k
 | 
						|
*>
 | 
						|
*> Type 5:  (A,B) and have potentially close or common eigenvalues and
 | 
						|
*>          very large departure from block diagonality A_11 is chosen
 | 
						|
*>          as the m x m leading submatrix of A_1:
 | 
						|
*>                  |  1  b                            |
 | 
						|
*>                  | -b  1                            |
 | 
						|
*>                  |        1+d  b                    |
 | 
						|
*>                  |         -b 1+d                   |
 | 
						|
*>           A_1 =  |                  d  1            |
 | 
						|
*>                  |                 -1  d            |
 | 
						|
*>                  |                        -d  1     |
 | 
						|
*>                  |                        -1 -d     |
 | 
						|
*>                  |                               1  |
 | 
						|
*>          and A_22 is chosen as the k x k leading submatrix of A_2:
 | 
						|
*>                  | -1  b                            |
 | 
						|
*>                  | -b -1                            |
 | 
						|
*>                  |       1-d  b                     |
 | 
						|
*>                  |       -b  1-d                    |
 | 
						|
*>           A_2 =  |                 d 1+b            |
 | 
						|
*>                  |               -1-b d             |
 | 
						|
*>                  |                       -d  1+b    |
 | 
						|
*>                  |                      -1+b  -d    |
 | 
						|
*>                  |                              1-d |
 | 
						|
*>          and matrix B are chosen as identity matrices (see DLATM5).
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NSIZE
 | 
						|
*> \verbatim
 | 
						|
*>          NSIZE is INTEGER
 | 
						|
*>          The maximum size of the matrices to use. NSIZE >= 0.
 | 
						|
*>          If NSIZE = 0, no built-in tests matrices are used, but
 | 
						|
*>          read-in test matrices are used to test DGGESX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NCMAX
 | 
						|
*> \verbatim
 | 
						|
*>          NCMAX is INTEGER
 | 
						|
*>          Maximum allowable NMAX for generating Kroneker matrix
 | 
						|
*>          in call to DLAKF2
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          A test will count as "failed" if the "error", computed as
 | 
						|
*>          described above, exceeds THRESH.  Note that the error
 | 
						|
*>          is scaled to be O(1), so THRESH should be a reasonably
 | 
						|
*>          small multiple of 1, e.g., 10 or 100.  In particular,
 | 
						|
*>          it should not depend on the precision (single vs. double)
 | 
						|
*>          or the size of the matrix.  THRESH >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NIN
 | 
						|
*> \verbatim
 | 
						|
*>          NIN is INTEGER
 | 
						|
*>          The FORTRAN unit number for reading in the data file of
 | 
						|
*>          problems to solve.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns IINFO not equal to 0.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Used to store the matrix whose eigenvalues are to be
 | 
						|
*>          computed.  On exit, A contains the last matrix actually used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A, B, AI, BI, Z and Q,
 | 
						|
*>          LDA >= max( 1, NSIZE ). For the read-in test,
 | 
						|
*>          LDA >= max( 1, N ), N is the size of the test matrices.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Used to store the matrix whose eigenvalues are to be
 | 
						|
*>          computed.  On exit, B contains the last matrix actually used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AI
 | 
						|
*> \verbatim
 | 
						|
*>          AI is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Copy of A, modified by DGGESX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BI
 | 
						|
*> \verbatim
 | 
						|
*>          BI is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Copy of B, modified by DGGESX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Z holds the left Schur vectors computed by DGGESX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDA, NSIZE)
 | 
						|
*>          Q holds the right Schur vectors computed by DGGESX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is DOUBLE PRECISION array, dimension (NSIZE)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is DOUBLE PRECISION array, dimension (NSIZE)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION array, dimension (NSIZE)
 | 
						|
*>
 | 
						|
*>          On exit, (ALPHAR + ALPHAI*i)/BETA are the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (LDC, LDC)
 | 
						|
*>          Store the matrix generated by subroutine DLAKF2, this is the
 | 
						|
*>          matrix formed by Kronecker products used for estimating
 | 
						|
*>          DIF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of C. LDC >= max(1, LDA*LDA/2 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (LDC)
 | 
						|
*>          Singular values of C
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          LWORK >= MAX( 5*NSIZE*NSIZE/2 - 2, 10*(NSIZE+1) )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (LIWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK. LIWORK >= NSIZE + 6.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWORK
 | 
						|
*> \verbatim
 | 
						|
*>          BWORK is LOGICAL array, dimension (LDA)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  A routine returned an error code.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B, AI,
 | 
						|
     $                   BI, Z, Q, ALPHAR, ALPHAI, BETA, C, LDC, S,
 | 
						|
     $                   WORK, LWORK, IWORK, LIWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
 | 
						|
     $                   NOUT, NSIZE
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            BWORK( * )
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), AI( LDA, * ), ALPHAI( * ),
 | 
						|
     $                   ALPHAR( * ), B( LDA, * ), BETA( * ),
 | 
						|
     $                   BI( LDA, * ), C( LDC, * ), Q( LDA, * ), S( * ),
 | 
						|
     $                   WORK( * ), Z( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TEN
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILABAD
 | 
						|
      CHARACTER          SENSE
 | 
						|
      INTEGER            BDSPAC, I, I1, IFUNC, IINFO, J, LINFO, MAXWRK,
 | 
						|
     $                   MINWRK, MM, MN2, NERRS, NPTKNT, NTEST, NTESTT,
 | 
						|
     $                   PRTYPE, QBA, QBB
 | 
						|
      DOUBLE PRECISION   ABNRM, BIGNUM, DIFTRU, PLTRU, SMLNUM, TEMP1,
 | 
						|
     $                   TEMP2, THRSH2, ULP, ULPINV, WEIGHT
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   DIFEST( 2 ), PL( 2 ), RESULT( 10 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            DLCTSX
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           DLCTSX, ILAENV, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALASVM, DGESVD, DGET51, DGET53, DGGESX,
 | 
						|
     $                   DLACPY, DLAKF2, DLASET, DLATM5, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            FS
 | 
						|
      INTEGER            K, M, MPLUSN, N
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / MN / M, N, MPLUSN, K, FS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZE.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( THRESH.LT.ZERO ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NIN.LE.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NOUT.LE.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NSIZE ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDC.LT.1 .OR. LDC.LT.NSIZE*NSIZE / 2 ) THEN
 | 
						|
         INFO = -17
 | 
						|
      ELSE IF( LIWORK.LT.NSIZE+6 ) THEN
 | 
						|
         INFO = -21
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV.)
 | 
						|
*
 | 
						|
      MINWRK = 1
 | 
						|
      IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
 | 
						|
         MINWRK = MAX( 10*( NSIZE+1 ), 5*NSIZE*NSIZE / 2 )
 | 
						|
*
 | 
						|
*        workspace for sggesx
 | 
						|
*
 | 
						|
         MAXWRK = 9*( NSIZE+1 ) + NSIZE*
 | 
						|
     $            ILAENV( 1, 'DGEQRF', ' ', NSIZE, 1, NSIZE, 0 )
 | 
						|
         MAXWRK = MAX( MAXWRK, 9*( NSIZE+1 )+NSIZE*
 | 
						|
     $            ILAENV( 1, 'DORGQR', ' ', NSIZE, 1, NSIZE, -1 ) )
 | 
						|
*
 | 
						|
*        workspace for dgesvd
 | 
						|
*
 | 
						|
         BDSPAC = 5*NSIZE*NSIZE / 2
 | 
						|
         MAXWRK = MAX( MAXWRK, 3*NSIZE*NSIZE / 2+NSIZE*NSIZE*
 | 
						|
     $            ILAENV( 1, 'DGEBRD', ' ', NSIZE*NSIZE / 2,
 | 
						|
     $            NSIZE*NSIZE / 2, -1, -1 ) )
 | 
						|
         MAXWRK = MAX( MAXWRK, BDSPAC )
 | 
						|
*
 | 
						|
         MAXWRK = MAX( MAXWRK, MINWRK )
 | 
						|
*
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LWORK.LT.MINWRK )
 | 
						|
     $   INFO = -19
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DDRGSX', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Important constants
 | 
						|
*
 | 
						|
      ULP = DLAMCH( 'P' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / ULP
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      THRSH2 = TEN*THRESH
 | 
						|
      NTESTT = 0
 | 
						|
      NERRS = 0
 | 
						|
*
 | 
						|
*     Go to the tests for read-in matrix pairs
 | 
						|
*
 | 
						|
      IFUNC = 0
 | 
						|
      IF( NSIZE.EQ.0 )
 | 
						|
     $   GO TO 70
 | 
						|
*
 | 
						|
*     Test the built-in matrix pairs.
 | 
						|
*     Loop over different functions (IFUNC) of DGGESX, types (PRTYPE)
 | 
						|
*     of test matrices, different size (M+N)
 | 
						|
*
 | 
						|
      PRTYPE = 0
 | 
						|
      QBA = 3
 | 
						|
      QBB = 4
 | 
						|
      WEIGHT = SQRT( ULP )
 | 
						|
*
 | 
						|
      DO 60 IFUNC = 0, 3
 | 
						|
         DO 50 PRTYPE = 1, 5
 | 
						|
            DO 40 M = 1, NSIZE - 1
 | 
						|
               DO 30 N = 1, NSIZE - M
 | 
						|
*
 | 
						|
                  WEIGHT = ONE / WEIGHT
 | 
						|
                  MPLUSN = M + N
 | 
						|
*
 | 
						|
*                 Generate test matrices
 | 
						|
*
 | 
						|
                  FS = .TRUE.
 | 
						|
                  K = 0
 | 
						|
*
 | 
						|
                  CALL DLASET( 'Full', MPLUSN, MPLUSN, ZERO, ZERO, AI,
 | 
						|
     $                         LDA )
 | 
						|
                  CALL DLASET( 'Full', MPLUSN, MPLUSN, ZERO, ZERO, BI,
 | 
						|
     $                         LDA )
 | 
						|
*
 | 
						|
                  CALL DLATM5( PRTYPE, M, N, AI, LDA, AI( M+1, M+1 ),
 | 
						|
     $                         LDA, AI( 1, M+1 ), LDA, BI, LDA,
 | 
						|
     $                         BI( M+1, M+1 ), LDA, BI( 1, M+1 ), LDA,
 | 
						|
     $                         Q, LDA, Z, LDA, WEIGHT, QBA, QBB )
 | 
						|
*
 | 
						|
*                 Compute the Schur factorization and swapping the
 | 
						|
*                 m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
 | 
						|
*                 Swapping is accomplished via the function DLCTSX
 | 
						|
*                 which is supplied below.
 | 
						|
*
 | 
						|
                  IF( IFUNC.EQ.0 ) THEN
 | 
						|
                     SENSE = 'N'
 | 
						|
                  ELSE IF( IFUNC.EQ.1 ) THEN
 | 
						|
                     SENSE = 'E'
 | 
						|
                  ELSE IF( IFUNC.EQ.2 ) THEN
 | 
						|
                     SENSE = 'V'
 | 
						|
                  ELSE IF( IFUNC.EQ.3 ) THEN
 | 
						|
                     SENSE = 'B'
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
 | 
						|
                  CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
 | 
						|
*
 | 
						|
                  CALL DGGESX( 'V', 'V', 'S', DLCTSX, SENSE, MPLUSN, AI,
 | 
						|
     $                         LDA, BI, LDA, MM, ALPHAR, ALPHAI, BETA,
 | 
						|
     $                         Q, LDA, Z, LDA, PL, DIFEST, WORK, LWORK,
 | 
						|
     $                         IWORK, LIWORK, BWORK, LINFO )
 | 
						|
*
 | 
						|
                  IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
 | 
						|
                     RESULT( 1 ) = ULPINV
 | 
						|
                     WRITE( NOUT, FMT = 9999 )'DGGESX', LINFO, MPLUSN,
 | 
						|
     $                  PRTYPE
 | 
						|
                     INFO = LINFO
 | 
						|
                     GO TO 30
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compute the norm(A, B)
 | 
						|
*
 | 
						|
                  CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK,
 | 
						|
     $                         MPLUSN )
 | 
						|
                  CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
 | 
						|
     $                         WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
 | 
						|
                  ABNRM = DLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN,
 | 
						|
     $                    WORK )
 | 
						|
*
 | 
						|
*                 Do tests (1) to (4)
 | 
						|
*
 | 
						|
                  CALL DGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z,
 | 
						|
     $                         LDA, WORK, RESULT( 1 ) )
 | 
						|
                  CALL DGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z,
 | 
						|
     $                         LDA, WORK, RESULT( 2 ) )
 | 
						|
                  CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q,
 | 
						|
     $                         LDA, WORK, RESULT( 3 ) )
 | 
						|
                  CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z,
 | 
						|
     $                         LDA, WORK, RESULT( 4 ) )
 | 
						|
                  NTEST = 4
 | 
						|
*
 | 
						|
*                 Do tests (5) and (6): check Schur form of A and
 | 
						|
*                 compare eigenvalues with diagonals.
 | 
						|
*
 | 
						|
                  TEMP1 = ZERO
 | 
						|
                  RESULT( 5 ) = ZERO
 | 
						|
                  RESULT( 6 ) = ZERO
 | 
						|
*
 | 
						|
                  DO 10 J = 1, MPLUSN
 | 
						|
                     ILABAD = .FALSE.
 | 
						|
                     IF( ALPHAI( J ).EQ.ZERO ) THEN
 | 
						|
                        TEMP2 = ( ABS( ALPHAR( J )-AI( J, J ) ) /
 | 
						|
     $                          MAX( SMLNUM, ABS( ALPHAR( J ) ),
 | 
						|
     $                          ABS( AI( J, J ) ) )+
 | 
						|
     $                          ABS( BETA( J )-BI( J, J ) ) /
 | 
						|
     $                          MAX( SMLNUM, ABS( BETA( J ) ),
 | 
						|
     $                          ABS( BI( J, J ) ) ) ) / ULP
 | 
						|
                        IF( J.LT.MPLUSN ) THEN
 | 
						|
                           IF( AI( J+1, J ).NE.ZERO ) THEN
 | 
						|
                              ILABAD = .TRUE.
 | 
						|
                              RESULT( 5 ) = ULPINV
 | 
						|
                           END IF
 | 
						|
                        END IF
 | 
						|
                        IF( J.GT.1 ) THEN
 | 
						|
                           IF( AI( J, J-1 ).NE.ZERO ) THEN
 | 
						|
                              ILABAD = .TRUE.
 | 
						|
                              RESULT( 5 ) = ULPINV
 | 
						|
                           END IF
 | 
						|
                        END IF
 | 
						|
                     ELSE
 | 
						|
                        IF( ALPHAI( J ).GT.ZERO ) THEN
 | 
						|
                           I1 = J
 | 
						|
                        ELSE
 | 
						|
                           I1 = J - 1
 | 
						|
                        END IF
 | 
						|
                        IF( I1.LE.0 .OR. I1.GE.MPLUSN ) THEN
 | 
						|
                           ILABAD = .TRUE.
 | 
						|
                        ELSE IF( I1.LT.MPLUSN-1 ) THEN
 | 
						|
                           IF( AI( I1+2, I1+1 ).NE.ZERO ) THEN
 | 
						|
                              ILABAD = .TRUE.
 | 
						|
                              RESULT( 5 ) = ULPINV
 | 
						|
                           END IF
 | 
						|
                        ELSE IF( I1.GT.1 ) THEN
 | 
						|
                           IF( AI( I1, I1-1 ).NE.ZERO ) THEN
 | 
						|
                              ILABAD = .TRUE.
 | 
						|
                              RESULT( 5 ) = ULPINV
 | 
						|
                           END IF
 | 
						|
                        END IF
 | 
						|
                        IF( .NOT.ILABAD ) THEN
 | 
						|
                           CALL DGET53( AI( I1, I1 ), LDA, BI( I1, I1 ),
 | 
						|
     $                                  LDA, BETA( J ), ALPHAR( J ),
 | 
						|
     $                                  ALPHAI( J ), TEMP2, IINFO )
 | 
						|
                           IF( IINFO.GE.3 ) THEN
 | 
						|
                              WRITE( NOUT, FMT = 9997 )IINFO, J,
 | 
						|
     $                           MPLUSN, PRTYPE
 | 
						|
                              INFO = ABS( IINFO )
 | 
						|
                           END IF
 | 
						|
                        ELSE
 | 
						|
                           TEMP2 = ULPINV
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                     TEMP1 = MAX( TEMP1, TEMP2 )
 | 
						|
                     IF( ILABAD ) THEN
 | 
						|
                        WRITE( NOUT, FMT = 9996 )J, MPLUSN, PRTYPE
 | 
						|
                     END IF
 | 
						|
   10             CONTINUE
 | 
						|
                  RESULT( 6 ) = TEMP1
 | 
						|
                  NTEST = NTEST + 2
 | 
						|
*
 | 
						|
*                 Test (7) (if sorting worked)
 | 
						|
*
 | 
						|
                  RESULT( 7 ) = ZERO
 | 
						|
                  IF( LINFO.EQ.MPLUSN+3 ) THEN
 | 
						|
                     RESULT( 7 ) = ULPINV
 | 
						|
                  ELSE IF( MM.NE.N ) THEN
 | 
						|
                     RESULT( 7 ) = ULPINV
 | 
						|
                  END IF
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Test (8): compare the estimated value DIF and its
 | 
						|
*                 value. first, compute the exact DIF.
 | 
						|
*
 | 
						|
                  RESULT( 8 ) = ZERO
 | 
						|
                  MN2 = MM*( MPLUSN-MM )*2
 | 
						|
                  IF( IFUNC.GE.2 .AND. MN2.LE.NCMAX*NCMAX ) THEN
 | 
						|
*
 | 
						|
*                    Note: for either following two causes, there are
 | 
						|
*                    almost same number of test cases fail the test.
 | 
						|
*
 | 
						|
                     CALL DLAKF2( MM, MPLUSN-MM, AI, LDA,
 | 
						|
     $                            AI( MM+1, MM+1 ), BI,
 | 
						|
     $                            BI( MM+1, MM+1 ), C, LDC )
 | 
						|
*
 | 
						|
                     CALL DGESVD( 'N', 'N', MN2, MN2, C, LDC, S, WORK,
 | 
						|
     $                            1, WORK( 2 ), 1, WORK( 3 ), LWORK-2,
 | 
						|
     $                            INFO )
 | 
						|
                     DIFTRU = S( MN2 )
 | 
						|
*
 | 
						|
                     IF( DIFEST( 2 ).EQ.ZERO ) THEN
 | 
						|
                        IF( DIFTRU.GT.ABNRM*ULP )
 | 
						|
     $                     RESULT( 8 ) = ULPINV
 | 
						|
                     ELSE IF( DIFTRU.EQ.ZERO ) THEN
 | 
						|
                        IF( DIFEST( 2 ).GT.ABNRM*ULP )
 | 
						|
     $                     RESULT( 8 ) = ULPINV
 | 
						|
                     ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
 | 
						|
     $                        ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
 | 
						|
                        RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ),
 | 
						|
     $                                DIFEST( 2 ) / DIFTRU )
 | 
						|
                     END IF
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Test (9)
 | 
						|
*
 | 
						|
                  RESULT( 9 ) = ZERO
 | 
						|
                  IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
 | 
						|
                     IF( DIFTRU.GT.ABNRM*ULP )
 | 
						|
     $                  RESULT( 9 ) = ULPINV
 | 
						|
                     IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
 | 
						|
     $                  RESULT( 9 ) = ULPINV
 | 
						|
                     IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
 | 
						|
     $                  RESULT( 9 ) = ULPINV
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  NTESTT = NTESTT + NTEST
 | 
						|
*
 | 
						|
*                 Print out tests which fail.
 | 
						|
*
 | 
						|
                  DO 20 J = 1, 9
 | 
						|
                     IF( RESULT( J ).GE.THRESH ) THEN
 | 
						|
*
 | 
						|
*                       If this is the first test to fail,
 | 
						|
*                       print a header to the data file.
 | 
						|
*
 | 
						|
                        IF( NERRS.EQ.0 ) THEN
 | 
						|
                           WRITE( NOUT, FMT = 9995 )'DGX'
 | 
						|
*
 | 
						|
*                          Matrix types
 | 
						|
*
 | 
						|
                           WRITE( NOUT, FMT = 9993 )
 | 
						|
*
 | 
						|
*                          Tests performed
 | 
						|
*
 | 
						|
                           WRITE( NOUT, FMT = 9992 )'orthogonal', '''',
 | 
						|
     $                        'transpose', ( '''', I = 1, 4 )
 | 
						|
*
 | 
						|
                        END IF
 | 
						|
                        NERRS = NERRS + 1
 | 
						|
                        IF( RESULT( J ).LT.10000.0D0 ) THEN
 | 
						|
                           WRITE( NOUT, FMT = 9991 )MPLUSN, PRTYPE,
 | 
						|
     $                        WEIGHT, M, J, RESULT( J )
 | 
						|
                        ELSE
 | 
						|
                           WRITE( NOUT, FMT = 9990 )MPLUSN, PRTYPE,
 | 
						|
     $                        WEIGHT, M, J, RESULT( J )
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
   20             CONTINUE
 | 
						|
*
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
      GO TO 150
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Read in data from file to check accuracy of condition estimation
 | 
						|
*     Read input data until N=0
 | 
						|
*
 | 
						|
      NPTKNT = 0
 | 
						|
*
 | 
						|
   80 CONTINUE
 | 
						|
      READ( NIN, FMT = *, END = 140 )MPLUSN
 | 
						|
      IF( MPLUSN.EQ.0 )
 | 
						|
     $   GO TO 140
 | 
						|
      READ( NIN, FMT = *, END = 140 )N
 | 
						|
      DO 90 I = 1, MPLUSN
 | 
						|
         READ( NIN, FMT = * )( AI( I, J ), J = 1, MPLUSN )
 | 
						|
   90 CONTINUE
 | 
						|
      DO 100 I = 1, MPLUSN
 | 
						|
         READ( NIN, FMT = * )( BI( I, J ), J = 1, MPLUSN )
 | 
						|
  100 CONTINUE
 | 
						|
      READ( NIN, FMT = * )PLTRU, DIFTRU
 | 
						|
*
 | 
						|
      NPTKNT = NPTKNT + 1
 | 
						|
      FS = .TRUE.
 | 
						|
      K = 0
 | 
						|
      M = MPLUSN - N
 | 
						|
*
 | 
						|
      CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
 | 
						|
      CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
 | 
						|
*
 | 
						|
*     Compute the Schur factorization while swapping the
 | 
						|
*     m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
 | 
						|
*
 | 
						|
      CALL DGGESX( 'V', 'V', 'S', DLCTSX, 'B', MPLUSN, AI, LDA, BI, LDA,
 | 
						|
     $             MM, ALPHAR, ALPHAI, BETA, Q, LDA, Z, LDA, PL, DIFEST,
 | 
						|
     $             WORK, LWORK, IWORK, LIWORK, BWORK, LINFO )
 | 
						|
*
 | 
						|
      IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
 | 
						|
         RESULT( 1 ) = ULPINV
 | 
						|
         WRITE( NOUT, FMT = 9998 )'DGGESX', LINFO, MPLUSN, NPTKNT
 | 
						|
         GO TO 130
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the norm(A, B)
 | 
						|
*        (should this be norm of (A,B) or (AI,BI)?)
 | 
						|
*
 | 
						|
      CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, MPLUSN )
 | 
						|
      CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
 | 
						|
     $             WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
 | 
						|
      ABNRM = DLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, WORK )
 | 
						|
*
 | 
						|
*     Do tests (1) to (4)
 | 
						|
*
 | 
						|
      CALL DGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, LDA, WORK,
 | 
						|
     $             RESULT( 1 ) )
 | 
						|
      CALL DGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, LDA, WORK,
 | 
						|
     $             RESULT( 2 ) )
 | 
						|
      CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, LDA, WORK,
 | 
						|
     $             RESULT( 3 ) )
 | 
						|
      CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, LDA, WORK,
 | 
						|
     $             RESULT( 4 ) )
 | 
						|
*
 | 
						|
*     Do tests (5) and (6): check Schur form of A and compare
 | 
						|
*     eigenvalues with diagonals.
 | 
						|
*
 | 
						|
      NTEST = 6
 | 
						|
      TEMP1 = ZERO
 | 
						|
      RESULT( 5 ) = ZERO
 | 
						|
      RESULT( 6 ) = ZERO
 | 
						|
*
 | 
						|
      DO 110 J = 1, MPLUSN
 | 
						|
         ILABAD = .FALSE.
 | 
						|
         IF( ALPHAI( J ).EQ.ZERO ) THEN
 | 
						|
            TEMP2 = ( ABS( ALPHAR( J )-AI( J, J ) ) /
 | 
						|
     $              MAX( SMLNUM, ABS( ALPHAR( J ) ), ABS( AI( J,
 | 
						|
     $              J ) ) )+ABS( BETA( J )-BI( J, J ) ) /
 | 
						|
     $              MAX( SMLNUM, ABS( BETA( J ) ), ABS( BI( J, J ) ) ) )
 | 
						|
     $               / ULP
 | 
						|
            IF( J.LT.MPLUSN ) THEN
 | 
						|
               IF( AI( J+1, J ).NE.ZERO ) THEN
 | 
						|
                  ILABAD = .TRUE.
 | 
						|
                  RESULT( 5 ) = ULPINV
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( J.GT.1 ) THEN
 | 
						|
               IF( AI( J, J-1 ).NE.ZERO ) THEN
 | 
						|
                  ILABAD = .TRUE.
 | 
						|
                  RESULT( 5 ) = ULPINV
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( ALPHAI( J ).GT.ZERO ) THEN
 | 
						|
               I1 = J
 | 
						|
            ELSE
 | 
						|
               I1 = J - 1
 | 
						|
            END IF
 | 
						|
            IF( I1.LE.0 .OR. I1.GE.MPLUSN ) THEN
 | 
						|
               ILABAD = .TRUE.
 | 
						|
            ELSE IF( I1.LT.MPLUSN-1 ) THEN
 | 
						|
               IF( AI( I1+2, I1+1 ).NE.ZERO ) THEN
 | 
						|
                  ILABAD = .TRUE.
 | 
						|
                  RESULT( 5 ) = ULPINV
 | 
						|
               END IF
 | 
						|
            ELSE IF( I1.GT.1 ) THEN
 | 
						|
               IF( AI( I1, I1-1 ).NE.ZERO ) THEN
 | 
						|
                  ILABAD = .TRUE.
 | 
						|
                  RESULT( 5 ) = ULPINV
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( .NOT.ILABAD ) THEN
 | 
						|
               CALL DGET53( AI( I1, I1 ), LDA, BI( I1, I1 ), LDA,
 | 
						|
     $                      BETA( J ), ALPHAR( J ), ALPHAI( J ), TEMP2,
 | 
						|
     $                      IINFO )
 | 
						|
               IF( IINFO.GE.3 ) THEN
 | 
						|
                  WRITE( NOUT, FMT = 9997 )IINFO, J, MPLUSN, NPTKNT
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               TEMP2 = ULPINV
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         TEMP1 = MAX( TEMP1, TEMP2 )
 | 
						|
         IF( ILABAD ) THEN
 | 
						|
            WRITE( NOUT, FMT = 9996 )J, MPLUSN, NPTKNT
 | 
						|
         END IF
 | 
						|
  110 CONTINUE
 | 
						|
      RESULT( 6 ) = TEMP1
 | 
						|
*
 | 
						|
*     Test (7) (if sorting worked)  <--------- need to be checked.
 | 
						|
*
 | 
						|
      NTEST = 7
 | 
						|
      RESULT( 7 ) = ZERO
 | 
						|
      IF( LINFO.EQ.MPLUSN+3 )
 | 
						|
     $   RESULT( 7 ) = ULPINV
 | 
						|
*
 | 
						|
*     Test (8): compare the estimated value of DIF and its true value.
 | 
						|
*
 | 
						|
      NTEST = 8
 | 
						|
      RESULT( 8 ) = ZERO
 | 
						|
      IF( DIFEST( 2 ).EQ.ZERO ) THEN
 | 
						|
         IF( DIFTRU.GT.ABNRM*ULP )
 | 
						|
     $      RESULT( 8 ) = ULPINV
 | 
						|
      ELSE IF( DIFTRU.EQ.ZERO ) THEN
 | 
						|
         IF( DIFEST( 2 ).GT.ABNRM*ULP )
 | 
						|
     $      RESULT( 8 ) = ULPINV
 | 
						|
      ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
 | 
						|
     $         ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
 | 
						|
         RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), DIFEST( 2 ) / DIFTRU )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test (9)
 | 
						|
*
 | 
						|
      NTEST = 9
 | 
						|
      RESULT( 9 ) = ZERO
 | 
						|
      IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
 | 
						|
         IF( DIFTRU.GT.ABNRM*ULP )
 | 
						|
     $      RESULT( 9 ) = ULPINV
 | 
						|
         IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
 | 
						|
     $      RESULT( 9 ) = ULPINV
 | 
						|
         IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
 | 
						|
     $      RESULT( 9 ) = ULPINV
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test (10): compare the estimated value of PL and it true value.
 | 
						|
*
 | 
						|
      NTEST = 10
 | 
						|
      RESULT( 10 ) = ZERO
 | 
						|
      IF( PL( 1 ).EQ.ZERO ) THEN
 | 
						|
         IF( PLTRU.GT.ABNRM*ULP )
 | 
						|
     $      RESULT( 10 ) = ULPINV
 | 
						|
      ELSE IF( PLTRU.EQ.ZERO ) THEN
 | 
						|
         IF( PL( 1 ).GT.ABNRM*ULP )
 | 
						|
     $      RESULT( 10 ) = ULPINV
 | 
						|
      ELSE IF( ( PLTRU.GT.THRESH*PL( 1 ) ) .OR.
 | 
						|
     $         ( PLTRU*THRESH.LT.PL( 1 ) ) ) THEN
 | 
						|
         RESULT( 10 ) = ULPINV
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NTESTT = NTESTT + NTEST
 | 
						|
*
 | 
						|
*     Print out tests which fail.
 | 
						|
*
 | 
						|
      DO 120 J = 1, NTEST
 | 
						|
         IF( RESULT( J ).GE.THRESH ) THEN
 | 
						|
*
 | 
						|
*           If this is the first test to fail,
 | 
						|
*           print a header to the data file.
 | 
						|
*
 | 
						|
            IF( NERRS.EQ.0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9995 )'DGX'
 | 
						|
*
 | 
						|
*              Matrix types
 | 
						|
*
 | 
						|
               WRITE( NOUT, FMT = 9994 )
 | 
						|
*
 | 
						|
*              Tests performed
 | 
						|
*
 | 
						|
               WRITE( NOUT, FMT = 9992 )'orthogonal', '''',
 | 
						|
     $            'transpose', ( '''', I = 1, 4 )
 | 
						|
*
 | 
						|
            END IF
 | 
						|
            NERRS = NERRS + 1
 | 
						|
            IF( RESULT( J ).LT.10000.0D0 ) THEN
 | 
						|
               WRITE( NOUT, FMT = 9989 )NPTKNT, MPLUSN, J, RESULT( J )
 | 
						|
            ELSE
 | 
						|
               WRITE( NOUT, FMT = 9988 )NPTKNT, MPLUSN, J, RESULT( J )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
*
 | 
						|
  130 CONTINUE
 | 
						|
      GO TO 80
 | 
						|
  140 CONTINUE
 | 
						|
*
 | 
						|
  150 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL ALASVM( 'DGX', NOUT, NERRS, NTESTT, 0 )
 | 
						|
*
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
 9999 FORMAT( ' DDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | 
						|
     $      I6, ', JTYPE=', I6, ')' )
 | 
						|
*
 | 
						|
 9998 FORMAT( ' DDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | 
						|
     $      I6, ', Input Example #', I2, ')' )
 | 
						|
*
 | 
						|
 9997 FORMAT( ' DDRGSX: DGET53 returned INFO=', I1, ' for eigenvalue ',
 | 
						|
     $      I6, '.', / 9X, 'N=', I6, ', JTYPE=', I6, ')' )
 | 
						|
*
 | 
						|
 9996 FORMAT( ' DDRGSX: S not in Schur form at eigenvalue ', I6, '.',
 | 
						|
     $      / 9X, 'N=', I6, ', JTYPE=', I6, ')' )
 | 
						|
*
 | 
						|
 9995 FORMAT( / 1X, A3, ' -- Real Expert Generalized Schur form',
 | 
						|
     $      ' problem driver' )
 | 
						|
*
 | 
						|
 9994 FORMAT( 'Input Example' )
 | 
						|
*
 | 
						|
 9993 FORMAT( ' Matrix types: ', /
 | 
						|
     $      '  1:  A is a block diagonal matrix of Jordan blocks ',
 | 
						|
     $      'and B is the identity ', / '      matrix, ',
 | 
						|
     $      / '  2:  A and B are upper triangular matrices, ',
 | 
						|
     $      / '  3:  A and B are as type 2, but each second diagonal ',
 | 
						|
     $      'block in A_11 and ', /
 | 
						|
     $      '      each third diagonal block in A_22 are 2x2 blocks,',
 | 
						|
     $      / '  4:  A and B are block diagonal matrices, ',
 | 
						|
     $      / '  5:  (A,B) has potentially close or common ',
 | 
						|
     $      'eigenvalues.', / )
 | 
						|
*
 | 
						|
 9992 FORMAT( / ' Tests performed:  (S is Schur, T is triangular, ',
 | 
						|
     $      'Q and Z are ', A, ',', / 19X,
 | 
						|
     $      ' a is alpha, b is beta, and ', A, ' means ', A, '.)',
 | 
						|
     $      / '  1 = | A - Q S Z', A,
 | 
						|
     $      ' | / ( |A| n ulp )      2 = | B - Q T Z', A,
 | 
						|
     $      ' | / ( |B| n ulp )', / '  3 = | I - QQ', A,
 | 
						|
     $      ' | / ( n ulp )             4 = | I - ZZ', A,
 | 
						|
     $      ' | / ( n ulp )', / '  5 = 1/ULP  if A is not in ',
 | 
						|
     $      'Schur form S', / '  6 = difference between (alpha,beta)',
 | 
						|
     $      ' and diagonals of (S,T)', /
 | 
						|
     $      '  7 = 1/ULP  if SDIM is not the correct number of ',
 | 
						|
     $      'selected eigenvalues', /
 | 
						|
     $      '  8 = 1/ULP  if DIFEST/DIFTRU > 10*THRESH or ',
 | 
						|
     $      'DIFTRU/DIFEST > 10*THRESH',
 | 
						|
     $      / '  9 = 1/ULP  if DIFEST <> 0 or DIFTRU > ULP*norm(A,B) ',
 | 
						|
     $      'when reordering fails', /
 | 
						|
     $      ' 10 = 1/ULP  if PLEST/PLTRU > THRESH or ',
 | 
						|
     $      'PLTRU/PLEST > THRESH', /
 | 
						|
     $      '    ( Test 10 is only for input examples )', / )
 | 
						|
 9991 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3,
 | 
						|
     $      ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, F8.2 )
 | 
						|
 9990 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3,
 | 
						|
     $      ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, D10.3 )
 | 
						|
 9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
 | 
						|
     $      ' result ', I2, ' is', 0P, F8.2 )
 | 
						|
 9988 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
 | 
						|
     $      ' result ', I2, ' is', 1P, D10.3 )
 | 
						|
*
 | 
						|
*     End of DDRGSX
 | 
						|
*
 | 
						|
      END
 |