912 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			912 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublecomplex c_b1 = {1.,0.};
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b ZLARZB applies a block reflector or its conjugate-transpose to a general matrix. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZLARZB + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarzb.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarzb.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarzb.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, */
 | 
						|
/*                          LDV, T, LDT, C, LDC, WORK, LDWORK ) */
 | 
						|
 | 
						|
/*       CHARACTER          DIRECT, SIDE, STOREV, TRANS */
 | 
						|
/*       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N */
 | 
						|
/*       COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ), */
 | 
						|
/*      $                   WORK( LDWORK, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZLARZB applies a complex block reflector H or its transpose H**H */
 | 
						|
/* > to a complex distributed M-by-N  C from the left or the right. */
 | 
						|
/* > */
 | 
						|
/* > Currently, only STOREV = 'R' and DIRECT = 'B' are supported. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] SIDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SIDE is CHARACTER*1 */
 | 
						|
/* >          = 'L': apply H or H**H from the Left */
 | 
						|
/* >          = 'R': apply H or H**H from the Right */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >          = 'N': apply H (No transpose) */
 | 
						|
/* >          = 'C': apply H**H (Conjugate transpose) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DIRECT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DIRECT is CHARACTER*1 */
 | 
						|
/* >          Indicates how H is formed from a product of elementary */
 | 
						|
/* >          reflectors */
 | 
						|
/* >          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) */
 | 
						|
/* >          = 'B': H = H(k) . . . H(2) H(1) (Backward) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] STOREV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          STOREV is CHARACTER*1 */
 | 
						|
/* >          Indicates how the vectors which define the elementary */
 | 
						|
/* >          reflectors are stored: */
 | 
						|
/* >          = 'C': Columnwise                        (not supported yet) */
 | 
						|
/* >          = 'R': Rowwise */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of rows of the matrix C. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of columns of the matrix C. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] K */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          K is INTEGER */
 | 
						|
/* >          The order of the matrix T (= the number of elementary */
 | 
						|
/* >          reflectors whose product defines the block reflector). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] L */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          L is INTEGER */
 | 
						|
/* >          The number of columns of the matrix V containing the */
 | 
						|
/* >          meaningful part of the Householder reflectors. */
 | 
						|
/* >          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] V */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          V is COMPLEX*16 array, dimension (LDV,NV). */
 | 
						|
/* >          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDV is INTEGER */
 | 
						|
/* >          The leading dimension of the array V. */
 | 
						|
/* >          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] T */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          T is COMPLEX*16 array, dimension (LDT,K) */
 | 
						|
/* >          The triangular K-by-K matrix T in the representation of the */
 | 
						|
/* >          block reflector. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDT is INTEGER */
 | 
						|
/* >          The leading dimension of the array T. LDT >= K. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C is COMPLEX*16 array, dimension (LDC,N) */
 | 
						|
/* >          On entry, the M-by-N matrix C. */
 | 
						|
/* >          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDC is INTEGER */
 | 
						|
/* >          The leading dimension of the array C. LDC >= f2cmax(1,M). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX*16 array, dimension (LDWORK,K) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDWORK is INTEGER */
 | 
						|
/* >          The leading dimension of the array WORK. */
 | 
						|
/* >          If SIDE = 'L', LDWORK >= f2cmax(1,N); */
 | 
						|
/* >          if SIDE = 'R', LDWORK >= f2cmax(1,M). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16OTHERcomputational */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* >    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void zlarzb_(char *side, char *trans, char *direct, char *
 | 
						|
	storev, integer *m, integer *n, integer *k, integer *l, doublecomplex 
 | 
						|
	*v, integer *ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, 
 | 
						|
	integer *ldc, doublecomplex *work, integer *ldwork)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 
 | 
						|
	    work_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						|
    doublecomplex z__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer info, i__, j;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    integer *), zcopy_(integer *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *), ztrmm_(char *, char *, 
 | 
						|
	    char *, char *, integer *, integer *, doublecomplex *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen); 
 | 
						|
    extern void zlacgv_(integer *, doublecomplex *, integer *);
 | 
						|
    char transt[1];
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    v_dim1 = *ldv;
 | 
						|
    v_offset = 1 + v_dim1 * 1;
 | 
						|
    v -= v_offset;
 | 
						|
    t_dim1 = *ldt;
 | 
						|
    t_offset = 1 + t_dim1 * 1;
 | 
						|
    t -= t_offset;
 | 
						|
    c_dim1 = *ldc;
 | 
						|
    c_offset = 1 + c_dim1 * 1;
 | 
						|
    c__ -= c_offset;
 | 
						|
    work_dim1 = *ldwork;
 | 
						|
    work_offset = 1 + work_dim1 * 1;
 | 
						|
    work -= work_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (*m <= 0 || *n <= 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for currently supported options */
 | 
						|
 | 
						|
    info = 0;
 | 
						|
    if (! lsame_(direct, "B")) {
 | 
						|
	info = -3;
 | 
						|
    } else if (! lsame_(storev, "R")) {
 | 
						|
	info = -4;
 | 
						|
    }
 | 
						|
    if (info != 0) {
 | 
						|
	i__1 = -info;
 | 
						|
	xerbla_("ZLARZB", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(trans, "N")) {
 | 
						|
	*(unsigned char *)transt = 'C';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)transt = 'N';
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(side, "L")) {
 | 
						|
 | 
						|
/*        Form  H * C  or  H**H * C */
 | 
						|
 | 
						|
/*        W( 1:n, 1:k ) = C( 1:k, 1:n )**H */
 | 
						|
 | 
						|
	i__1 = *k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1);
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ... */
 | 
						|
/*                        C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T */
 | 
						|
 | 
						|
	if (*l > 0) {
 | 
						|
	    zgemm_("Transpose", "Conjugate transpose", n, k, l, &c_b1, &c__[*
 | 
						|
		    m - *l + 1 + c_dim1], ldc, &v[v_offset], ldv, &c_b1, &
 | 
						|
		    work[work_offset], ldwork);
 | 
						|
	}
 | 
						|
 | 
						|
/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T */
 | 
						|
 | 
						|
	ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[t_offset]
 | 
						|
		, ldt, &work[work_offset], ldwork);
 | 
						|
 | 
						|
/*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *k;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		i__3 = i__ + j * c_dim1;
 | 
						|
		i__4 = i__ + j * c_dim1;
 | 
						|
		i__5 = j + i__ * work_dim1;
 | 
						|
		z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[i__4].i - 
 | 
						|
			work[i__5].i;
 | 
						|
		c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */
 | 
						|
/*                            V( 1:k, 1:l )**H * W( 1:n, 1:k )**H */
 | 
						|
 | 
						|
	if (*l > 0) {
 | 
						|
	    z__1.r = -1., z__1.i = 0.;
 | 
						|
	    zgemm_("Transpose", "Transpose", l, n, k, &z__1, &v[v_offset], 
 | 
						|
		    ldv, &work[work_offset], ldwork, &c_b1, &c__[*m - *l + 1 
 | 
						|
		    + c_dim1], ldc);
 | 
						|
	}
 | 
						|
 | 
						|
    } else if (lsame_(side, "R")) {
 | 
						|
 | 
						|
/*        Form  C * H  or  C * H**H */
 | 
						|
 | 
						|
/*        W( 1:m, 1:k ) = C( 1:m, 1:k ) */
 | 
						|
 | 
						|
	i__1 = *k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &
 | 
						|
		    c__1);
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ... */
 | 
						|
/*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H */
 | 
						|
 | 
						|
	if (*l > 0) {
 | 
						|
	    zgemm_("No transpose", "Transpose", m, k, l, &c_b1, &c__[(*n - *l 
 | 
						|
		    + 1) * c_dim1 + 1], ldc, &v[v_offset], ldv, &c_b1, &work[
 | 
						|
		    work_offset], ldwork);
 | 
						|
	}
 | 
						|
 | 
						|
/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T )  or */
 | 
						|
/*                        W( 1:m, 1:k ) * T**H */
 | 
						|
 | 
						|
	i__1 = *k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *k - j + 1;
 | 
						|
	    zlacgv_(&i__2, &t[j + j * t_dim1], &c__1);
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
	ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[t_offset],
 | 
						|
		 ldt, &work[work_offset], ldwork);
 | 
						|
	i__1 = *k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *k - j + 1;
 | 
						|
	    zlacgv_(&i__2, &t[j + j * t_dim1], &c__1);
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k ) */
 | 
						|
 | 
						|
	i__1 = *k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *m;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		i__3 = i__ + j * c_dim1;
 | 
						|
		i__4 = i__ + j * c_dim1;
 | 
						|
		i__5 = i__ + j * work_dim1;
 | 
						|
		z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[i__4].i - 
 | 
						|
			work[i__5].i;
 | 
						|
		c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
/* L80: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */
 | 
						|
/*                            W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) ) */
 | 
						|
 | 
						|
	i__1 = *l;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    zlacgv_(k, &v[j * v_dim1 + 1], &c__1);
 | 
						|
/* L90: */
 | 
						|
	}
 | 
						|
	if (*l > 0) {
 | 
						|
	    z__1.r = -1., z__1.i = 0.;
 | 
						|
	    zgemm_("No transpose", "No transpose", m, l, k, &z__1, &work[
 | 
						|
		    work_offset], ldwork, &v[v_offset], ldv, &c_b1, &c__[(*n 
 | 
						|
		    - *l + 1) * c_dim1 + 1], ldc);
 | 
						|
	}
 | 
						|
	i__1 = *l;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    zlacgv_(k, &v[j * v_dim1 + 1], &c__1);
 | 
						|
/* L100: */
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZLARZB */
 | 
						|
 | 
						|
} /* zlarzb_ */
 | 
						|
 |