279 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHER
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL ALPHA
 | 
						|
*       INTEGER INCX,LDA,N
 | 
						|
*       CHARACTER UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX A(LDA,*),X(*)
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHER   performs the hermitian rank 1 operation
 | 
						|
*>
 | 
						|
*>    A := alpha*x*x**H + A,
 | 
						|
*>
 | 
						|
*> where alpha is a real scalar, x is an n element vector and A is an
 | 
						|
*> n by n hermitian matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the upper or lower
 | 
						|
*>           triangular part of the array A is to be referenced as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | 
						|
*>                                  is to be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the n
 | 
						|
*>           element vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension ( LDA, N )
 | 
						|
*>           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | 
						|
*>           upper triangular part of the array A must contain the upper
 | 
						|
*>           triangular part of the hermitian matrix and the strictly
 | 
						|
*>           lower triangular part of A is not referenced. On exit, the
 | 
						|
*>           upper triangular part of the array A is overwritten by the
 | 
						|
*>           upper triangular part of the updated matrix.
 | 
						|
*>           Before entry with UPLO = 'L' or 'l', the leading n by n
 | 
						|
*>           lower triangular part of the array A must contain the lower
 | 
						|
*>           triangular part of the hermitian matrix and the strictly
 | 
						|
*>           upper triangular part of A is not referenced. On exit, the
 | 
						|
*>           lower triangular part of the array A is overwritten by the
 | 
						|
*>           lower triangular part of the updated matrix.
 | 
						|
*>           Note that the imaginary parts of the diagonal elements need
 | 
						|
*>           not be set, they are assumed to be zero, and on exit they
 | 
						|
*>           are set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in the calling (sub) program. LDA must be at least
 | 
						|
*>           max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex_blas_level2
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 22-October-1986.
 | 
						|
*>     Jack Dongarra, Argonne National Lab.
 | 
						|
*>     Jeremy Du Croz, Nag Central Office.
 | 
						|
*>     Sven Hammarling, Nag Central Office.
 | 
						|
*>     Richard Hanson, Sandia National Labs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level2 routine (version 3.7.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL ALPHA
 | 
						|
      INTEGER INCX,LDA,N
 | 
						|
      CHARACTER UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX A(LDA,*),X(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX ZERO
 | 
						|
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX TEMP
 | 
						|
      INTEGER I,INFO,IX,J,JX,KX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC CONJG,MAX,REAL
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (INCX.EQ.0) THEN
 | 
						|
          INFO = 5
 | 
						|
      ELSE IF (LDA.LT.MAX(1,N)) THEN
 | 
						|
          INFO = 7
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('CHER  ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF (INCX.LE.0) THEN
 | 
						|
          KX = 1 - (N-1)*INCX
 | 
						|
      ELSE IF (INCX.NE.1) THEN
 | 
						|
          KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the triangular part
 | 
						|
*     of A.
 | 
						|
*
 | 
						|
      IF (LSAME(UPLO,'U')) THEN
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in upper triangle.
 | 
						|
*
 | 
						|
          IF (INCX.EQ.1) THEN
 | 
						|
              DO 20 J = 1,N
 | 
						|
                  IF (X(J).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*CONJG(X(J))
 | 
						|
                      DO 10 I = 1,J - 1
 | 
						|
                          A(I,J) = A(I,J) + X(I)*TEMP
 | 
						|
   10                 CONTINUE
 | 
						|
                      A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
 | 
						|
                  ELSE
 | 
						|
                      A(J,J) = REAL(A(J,J))
 | 
						|
                  END IF
 | 
						|
   20         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              DO 40 J = 1,N
 | 
						|
                  IF (X(JX).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*CONJG(X(JX))
 | 
						|
                      IX = KX
 | 
						|
                      DO 30 I = 1,J - 1
 | 
						|
                          A(I,J) = A(I,J) + X(IX)*TEMP
 | 
						|
                          IX = IX + INCX
 | 
						|
   30                 CONTINUE
 | 
						|
                      A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
 | 
						|
                  ELSE
 | 
						|
                      A(J,J) = REAL(A(J,J))
 | 
						|
                  END IF
 | 
						|
                  JX = JX + INCX
 | 
						|
   40         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in lower triangle.
 | 
						|
*
 | 
						|
          IF (INCX.EQ.1) THEN
 | 
						|
              DO 60 J = 1,N
 | 
						|
                  IF (X(J).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*CONJG(X(J))
 | 
						|
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
 | 
						|
                      DO 50 I = J + 1,N
 | 
						|
                          A(I,J) = A(I,J) + X(I)*TEMP
 | 
						|
   50                 CONTINUE
 | 
						|
                  ELSE
 | 
						|
                      A(J,J) = REAL(A(J,J))
 | 
						|
                  END IF
 | 
						|
   60         CONTINUE
 | 
						|
          ELSE
 | 
						|
              JX = KX
 | 
						|
              DO 80 J = 1,N
 | 
						|
                  IF (X(JX).NE.ZERO) THEN
 | 
						|
                      TEMP = ALPHA*CONJG(X(JX))
 | 
						|
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
 | 
						|
                      IX = JX
 | 
						|
                      DO 70 I = J + 1,N
 | 
						|
                          IX = IX + INCX
 | 
						|
                          A(I,J) = A(I,J) + X(IX)*TEMP
 | 
						|
   70                 CONTINUE
 | 
						|
                  ELSE
 | 
						|
                      A(J,J) = REAL(A(J,J))
 | 
						|
                  END IF
 | 
						|
                  JX = JX + INCX
 | 
						|
   80         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHER  .
 | 
						|
*
 | 
						|
      END
 |