350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLAROR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          INIT, SIDE
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       COMPLEX*16         A( LDA, * ), X( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLAROR pre- or post-multiplies an M by N matrix A by a random
 | |
| *>    unitary matrix U, overwriting A. A may optionally be
 | |
| *>    initialized to the identity matrix before multiplying by U.
 | |
| *>    U is generated using the method of G.W. Stewart
 | |
| *>    ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
 | |
| *>    (BLAS-2 version)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>           SIDE specifies whether A is multiplied on the left or right
 | |
| *>           by U.
 | |
| *>       SIDE = 'L'   Multiply A on the left (premultiply) by U
 | |
| *>       SIDE = 'R'   Multiply A on the right (postmultiply) by UC>       SIDE = 'C'   Multiply A on the left by U and the right by UC>       SIDE = 'T'   Multiply A on the left by U and the right by U'
 | |
| *>           Not modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INIT
 | |
| *> \verbatim
 | |
| *>          INIT is CHARACTER*1
 | |
| *>           INIT specifies whether or not A should be initialized to
 | |
| *>           the identity matrix.
 | |
| *>              INIT = 'I'   Initialize A to (a section of) the
 | |
| *>                           identity matrix before applying U.
 | |
| *>              INIT = 'N'   No initialization.  Apply U to the
 | |
| *>                           input matrix A.
 | |
| *>
 | |
| *>           INIT = 'I' may be used to generate square (i.e., unitary)
 | |
| *>           or rectangular orthogonal matrices (orthogonality being
 | |
| *>           in the sense of ZDOTC):
 | |
| *>
 | |
| *>           For square matrices, M=N, and SIDE many be either 'L' or
 | |
| *>           'R'; the rows will be orthogonal to each other, as will the
 | |
| *>           columns.
 | |
| *>           For rectangular matrices where M < N, SIDE = 'R' will
 | |
| *>           produce a dense matrix whose rows will be orthogonal and
 | |
| *>           whose columns will not, while SIDE = 'L' will produce a
 | |
| *>           matrix whose rows will be orthogonal, and whose first M
 | |
| *>           columns will be orthogonal, the remaining columns being
 | |
| *>           zero.
 | |
| *>           For matrices where M > N, just use the previous
 | |
| *>           explanation, interchanging 'L' and 'R' and "rows" and
 | |
| *>           "columns".
 | |
| *>
 | |
| *>           Not modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           Number of rows of A. Not modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           Number of columns of A. Not modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>           A is COMPLEX*16 array, dimension ( LDA, N )
 | |
| *>           Input and output array. Overwritten by U A ( if SIDE = 'L' )
 | |
| *>           or by A U ( if SIDE = 'R' )
 | |
| *>           or by U A U* ( if SIDE = 'C')
 | |
| *>           or by U A U' ( if SIDE = 'T') on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           Leading dimension of A. Must be at least MAX ( 1, M ).
 | |
| *>           Not modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension ( 4 )
 | |
| *>           On entry ISEED specifies the seed of the random number
 | |
| *>           generator. The array elements should be between 0 and 4095;
 | |
| *>           if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>           be odd.  The random number generator uses a linear
 | |
| *>           congruential sequence limited to small integers, and so
 | |
| *>           should produce machine independent random numbers. The
 | |
| *>           values of ISEED are changed on exit, and can be used in the
 | |
| *>           next call to ZLAROR to continue the same random number
 | |
| *>           sequence.
 | |
| *>           Modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension ( 3*MAX( M, N ) )
 | |
| *>           Workspace. Of length:
 | |
| *>               2*M + N if SIDE = 'L',
 | |
| *>               2*N + M if SIDE = 'R',
 | |
| *>               3*N     if SIDE = 'C' or 'T'.
 | |
| *>           Modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           An error flag.  It is set to:
 | |
| *>            0  if no error.
 | |
| *>            1  if ZLARND returned a bad random number (installation
 | |
| *>               problem)
 | |
| *>           -1  if SIDE is not L, R, C, or T.
 | |
| *>           -3  if M is negative.
 | |
| *>           -4  if N is negative or if SIDE is C or T and N is not equal
 | |
| *>               to M.
 | |
| *>           -6  if LDA is less than M.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_matgen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          INIT, SIDE
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       COMPLEX*16         A( LDA, * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TOOSML
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
 | |
|      $                   TOOSML = 1.0D-20 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
 | |
|       DOUBLE PRECISION   FACTOR, XABS, XNORM
 | |
|       COMPLEX*16         CSIGN, XNORMS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DZNRM2
 | |
|       COMPLEX*16         ZLARND
 | |
|       EXTERNAL           LSAME, DZNRM2, ZLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZGEMV, ZGERC, ZLACGV, ZLASET, ZSCAL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DCMPLX, DCONJG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.EQ.0 .OR. M.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       ITYPE = 0
 | |
|       IF( LSAME( SIDE, 'L' ) ) THEN
 | |
|          ITYPE = 1
 | |
|       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | |
|          ITYPE = 2
 | |
|       ELSE IF( LSAME( SIDE, 'C' ) ) THEN
 | |
|          ITYPE = 3
 | |
|       ELSE IF( LSAME( SIDE, 'T' ) ) THEN
 | |
|          ITYPE = 4
 | |
|       END IF
 | |
| *
 | |
| *     Check for argument errors.
 | |
| *
 | |
|       IF( ITYPE.EQ.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.M ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZLAROR', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
|          NXFRM = M
 | |
|       ELSE
 | |
|          NXFRM = N
 | |
|       END IF
 | |
| *
 | |
| *     Initialize A to the identity matrix if desired
 | |
| *
 | |
|       IF( LSAME( INIT, 'I' ) )
 | |
|      $   CALL ZLASET( 'Full', M, N, CZERO, CONE, A, LDA )
 | |
| *
 | |
| *     If no rotation possible, still multiply by
 | |
| *     a random complex number from the circle |x| = 1
 | |
| *
 | |
| *      2)      Compute Rotation by computing Householder
 | |
| *              Transformations H(2), H(3), ..., H(n).  Note that the
 | |
| *              order in which they are computed is irrelevant.
 | |
| *
 | |
|       DO 10 J = 1, NXFRM
 | |
|          X( J ) = CZERO
 | |
|    10 CONTINUE
 | |
| *
 | |
|       DO 30 IXFRM = 2, NXFRM
 | |
|          KBEG = NXFRM - IXFRM + 1
 | |
| *
 | |
| *        Generate independent normal( 0, 1 ) random numbers
 | |
| *
 | |
|          DO 20 J = KBEG, NXFRM
 | |
|             X( J ) = ZLARND( 3, ISEED )
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Generate a Householder transformation from the random vector X
 | |
| *
 | |
|          XNORM = DZNRM2( IXFRM, X( KBEG ), 1 )
 | |
|          XABS = ABS( X( KBEG ) )
 | |
|          IF( XABS.NE.CZERO ) THEN
 | |
|             CSIGN = X( KBEG ) / XABS
 | |
|          ELSE
 | |
|             CSIGN = CONE
 | |
|          END IF
 | |
|          XNORMS = CSIGN*XNORM
 | |
|          X( NXFRM+KBEG ) = -CSIGN
 | |
|          FACTOR = XNORM*( XNORM+XABS )
 | |
|          IF( ABS( FACTOR ).LT.TOOSML ) THEN
 | |
|             INFO = 1
 | |
|             CALL XERBLA( 'ZLAROR', -INFO )
 | |
|             RETURN
 | |
|          ELSE
 | |
|             FACTOR = ONE / FACTOR
 | |
|          END IF
 | |
|          X( KBEG ) = X( KBEG ) + XNORMS
 | |
| *
 | |
| *        Apply Householder transformation to A
 | |
| *
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *           Apply H(k) on the left of A
 | |
| *
 | |
|             CALL ZGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
 | |
|      $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
 | |
|             CALL ZGERC( IXFRM, N, -DCMPLX( FACTOR ), X( KBEG ), 1,
 | |
|      $                  X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|          IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
 | |
| *
 | |
| *           Apply H(k)* (or H(k)') on the right of A
 | |
| *
 | |
|             IF( ITYPE.EQ.4 ) THEN
 | |
|                CALL ZLACGV( IXFRM, X( KBEG ), 1 )
 | |
|             END IF
 | |
| *
 | |
|             CALL ZGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
 | |
|      $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
 | |
|             CALL ZGERC( M, IXFRM, -DCMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
 | |
|      $                  X( KBEG ), 1, A( 1, KBEG ), LDA )
 | |
| *
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
| *
 | |
|       X( 1 ) = ZLARND( 3, ISEED )
 | |
|       XABS = ABS( X( 1 ) )
 | |
|       IF( XABS.NE.ZERO ) THEN
 | |
|          CSIGN = X( 1 ) / XABS
 | |
|       ELSE
 | |
|          CSIGN = CONE
 | |
|       END IF
 | |
|       X( 2*NXFRM ) = CSIGN
 | |
| *
 | |
| *     Scale the matrix A by D.
 | |
| *
 | |
|       IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
 | |
|          DO 40 IROW = 1, M
 | |
|             CALL ZSCAL( N, DCONJG( X( NXFRM+IROW ) ), A( IROW, 1 ),
 | |
|      $                  LDA )
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | |
|          DO 50 JCOL = 1, N
 | |
|             CALL ZSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
 | |
|    50    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.EQ.4 ) THEN
 | |
|          DO 60 JCOL = 1, N
 | |
|             CALL ZSCAL( M, DCONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLAROR
 | |
| *
 | |
|       END
 |