286 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSPT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDW, N
 | |
| *       DOUBLE PRECISION   RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( * ), AINV( * ), WORK( LDW, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSPT03 computes the residual for a complex symmetric packed matrix
 | |
| *> times its inverse:
 | |
| *>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          complex symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The original complex symmetric matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AINV
 | |
| *> \verbatim
 | |
| *>          AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The (symmetric) inverse of the matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (LDW,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDW
 | |
| *> \verbatim
 | |
| *>          LDW is INTEGER
 | |
| *>          The leading dimension of the array WORK.  LDW >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal of the condition number of A, computed as
 | |
| *>          ( 1/norm(A) ) / norm(AINV).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDW, N
 | |
|       DOUBLE PRECISION   RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( * ), AINV( * ), WORK( LDW, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ICOL, J, JCOL, K, KCOL, NALL
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, EPS
 | |
|       COMPLEX*16         T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSP
 | |
|       COMPLEX*16         ZDOTU
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANSP, ZDOTU
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANSP( '1', UPLO, N, A, RWORK )
 | |
|       AINVNM = ZLANSP( '1', UPLO, N, AINV, RWORK )
 | |
|       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|          RCOND = ZERO
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
|       RCOND = ( ONE / ANORM ) / AINVNM
 | |
| *
 | |
| *     Case where both A and AINV are upper triangular:
 | |
| *     Each element of - A * AINV is computed by taking the dot product
 | |
| *     of a row of A with a column of AINV.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 70 I = 1, N
 | |
|             ICOL = ( ( I-1 )*I ) / 2 + 1
 | |
| *
 | |
| *           Code when J <= I
 | |
| *
 | |
|             DO 30 J = 1, I
 | |
|                JCOL = ( ( J-1 )*J ) / 2 + 1
 | |
|                T = ZDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
 | |
|                JCOL = JCOL + 2*J - 1
 | |
|                KCOL = ICOL - 1
 | |
|                DO 10 K = J + 1, I
 | |
|                   T = T + A( KCOL+K )*AINV( JCOL )
 | |
|                   JCOL = JCOL + K
 | |
|    10          CONTINUE
 | |
|                KCOL = KCOL + 2*I
 | |
|                DO 20 K = I + 1, N
 | |
|                   T = T + A( KCOL )*AINV( JCOL )
 | |
|                   KCOL = KCOL + K
 | |
|                   JCOL = JCOL + K
 | |
|    20          CONTINUE
 | |
|                WORK( I, J ) = -T
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           Code when J > I
 | |
| *
 | |
|             DO 60 J = I + 1, N
 | |
|                JCOL = ( ( J-1 )*J ) / 2 + 1
 | |
|                T = ZDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
 | |
|                JCOL = JCOL - 1
 | |
|                KCOL = ICOL + 2*I - 1
 | |
|                DO 40 K = I + 1, J
 | |
|                   T = T + A( KCOL )*AINV( JCOL+K )
 | |
|                   KCOL = KCOL + K
 | |
|    40          CONTINUE
 | |
|                JCOL = JCOL + 2*J
 | |
|                DO 50 K = J + 1, N
 | |
|                   T = T + A( KCOL )*AINV( JCOL )
 | |
|                   KCOL = KCOL + K
 | |
|                   JCOL = JCOL + K
 | |
|    50          CONTINUE
 | |
|                WORK( I, J ) = -T
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Case where both A and AINV are lower triangular
 | |
| *
 | |
|          NALL = ( N*( N+1 ) ) / 2
 | |
|          DO 140 I = 1, N
 | |
| *
 | |
| *           Code when J <= I
 | |
| *
 | |
|             ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
 | |
|             DO 100 J = 1, I
 | |
|                JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
 | |
|                T = ZDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
 | |
|                KCOL = I
 | |
|                JCOL = J
 | |
|                DO 80 K = 1, J - 1
 | |
|                   T = T + A( KCOL )*AINV( JCOL )
 | |
|                   JCOL = JCOL + N - K
 | |
|                   KCOL = KCOL + N - K
 | |
|    80          CONTINUE
 | |
|                JCOL = JCOL - J
 | |
|                DO 90 K = J, I - 1
 | |
|                   T = T + A( KCOL )*AINV( JCOL+K )
 | |
|                   KCOL = KCOL + N - K
 | |
|    90          CONTINUE
 | |
|                WORK( I, J ) = -T
 | |
|   100       CONTINUE
 | |
| *
 | |
| *           Code when J > I
 | |
| *
 | |
|             ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
 | |
|             DO 130 J = I + 1, N
 | |
|                JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
 | |
|                T = ZDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
 | |
|                KCOL = I
 | |
|                JCOL = J
 | |
|                DO 110 K = 1, I - 1
 | |
|                   T = T + A( KCOL )*AINV( JCOL )
 | |
|                   JCOL = JCOL + N - K
 | |
|                   KCOL = KCOL + N - K
 | |
|   110          CONTINUE
 | |
|                KCOL = KCOL - I
 | |
|                DO 120 K = I, J - 1
 | |
|                   T = T + A( KCOL+K )*AINV( JCOL )
 | |
|                   JCOL = JCOL + N - K
 | |
|   120          CONTINUE
 | |
|                WORK( I, J ) = -T
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Add the identity matrix to WORK .
 | |
| *
 | |
|       DO 150 I = 1, N
 | |
|          WORK( I, I ) = WORK( I, I ) + ONE
 | |
|   150 CONTINUE
 | |
| *
 | |
| *     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
 | |
| *
 | |
|       RESID = ZLANGE( '1', N, N, WORK, LDW, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSPT03
 | |
| *
 | |
|       END
 |