219 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSPT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDC, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSPT01 reconstructs a symmetric indefinite packed matrix A from its
 | |
| *> diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes
 | |
| *> the residual
 | |
| *>    norm( C - A ) / ( N * norm(A) * EPS ),
 | |
| *> where C is the reconstructed matrix and EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The original symmetric matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The factored form of the matrix A, stored as a packed
 | |
| *>          triangular matrix.  AFAC contains the block diagonal matrix D
 | |
| *>          and the multipliers used to obtain the factor L or U from the
 | |
| *>          L*D*L' or U*D*U' factorization as computed by ZSPTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from ZSPTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension (LDC,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.  LDC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDC, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J, JC
 | |
|       DOUBLE PRECISION   ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANSP, ZLANSY
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANSP, ZLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASET, ZLAVSP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANSP( '1', UPLO, N, A, RWORK )
 | |
| *
 | |
| *     Initialize C to the identity matrix.
 | |
| *
 | |
|       CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
 | |
| *
 | |
| *     Call ZLAVSP to form the product D * U' (or D * L' ).
 | |
| *
 | |
|       CALL ZLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
 | |
|      $             LDC, INFO )
 | |
| *
 | |
| *     Call ZLAVSP again to multiply by U ( or L ).
 | |
| *
 | |
|       CALL ZLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
 | |
|      $             LDC, INFO )
 | |
| *
 | |
| *     Compute the difference  C - A .
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          JC = 0
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = 1, J
 | |
|                C( I, J ) = C( I, J ) - A( JC+I )
 | |
|    10       CONTINUE
 | |
|             JC = JC + J
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
|          JC = 1
 | |
|          DO 40 J = 1, N
 | |
|             DO 30 I = J, N
 | |
|                C( I, J ) = C( I, J ) - A( JC+I-J )
 | |
|    30       CONTINUE
 | |
|             JC = JC + N - J + 1
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm( C - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = ZLANSY( '1', UPLO, N, C, LDC, RWORK )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSPT01
 | |
| *
 | |
|       END
 |