349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSBMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
 | |
| *                         INCY )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INCX, INCY, K, LDA, N
 | |
| *       COMPLEX*16         ALPHA, BETA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSBMV  performs the matrix-vector  operation
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are n element vectors and
 | |
| *> A is an n by n symmetric band matrix, with k super-diagonals.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \verbatim
 | |
| *>  UPLO   - CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the band matrix A is being supplied as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *>                                  being supplied.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *>                                  being supplied.
 | |
| *>
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  N      - INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  K      - INTEGER
 | |
| *>           On entry, K specifies the number of super-diagonals of the
 | |
| *>           matrix A. K must satisfy  0 .le. K.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  ALPHA  - COMPLEX*16
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  A      - COMPLEX*16 array, dimension( LDA, N )
 | |
| *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the upper triangular
 | |
| *>           band part of the symmetric matrix, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row
 | |
| *>           ( k + 1 ) of the array, the first super-diagonal starting at
 | |
| *>           position 2 in row k, and so on. The top left k by k triangle
 | |
| *>           of the array A is not referenced.
 | |
| *>           The following program segment will transfer the upper
 | |
| *>           triangular part of a symmetric band matrix from conventional
 | |
| *>           full matrix storage to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = K + 1 - J
 | |
| *>                    DO 10, I = MAX( 1, J - K ), J
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *>
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the lower triangular
 | |
| *>           band part of the symmetric matrix, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row 1 of
 | |
| *>           the array, the first sub-diagonal starting at position 1 in
 | |
| *>           row 2, and so on. The bottom right k by k triangle of the
 | |
| *>           array A is not referenced.
 | |
| *>           The following program segment will transfer the lower
 | |
| *>           triangular part of a symmetric band matrix from conventional
 | |
| *>           full matrix storage to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = 1 - J
 | |
| *>                    DO 10, I = J, MIN( N, J + K )
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *>
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  LDA    - INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           ( k + 1 ).
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  X      - COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( N - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  INCX   - INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  BETA   - COMPLEX*16
 | |
| *>           On entry, BETA specifies the scalar beta.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  Y      - COMPLEX*16 array, dimension at least
 | |
| *>           ( 1 + ( N - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the
 | |
| *>           vector y. On exit, Y is overwritten by the updated vector y.
 | |
| *>
 | |
| *>  INCY   - INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
 | |
|      $                  INCY )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INCX, INCY, K, LDA, N
 | |
|       COMPLEX*16         ALPHA, BETA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE
 | |
|       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
 | |
|       COMPLEX*16         TEMP1, TEMP2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( LDA.LT.( K+1 ) ) THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCX.EQ.0 ) THEN
 | |
|          INFO = 8
 | |
|       ELSE IF( INCY.EQ.0 ) THEN
 | |
|          INFO = 11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZSBMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( INCX.GT.0 ) THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( N-1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 ) THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( N-1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array A
 | |
| *     are accessed sequentially with one pass through A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE ) THEN
 | |
|          IF( INCY.EQ.1 ) THEN
 | |
|             IF( BETA.EQ.ZERO ) THEN
 | |
|                DO 10 I = 1, N
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20 I = 1, N
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO ) THEN
 | |
|                DO 30 I = 1, N
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY = IY + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 I = 1, N
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY = IY + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Form  y  when upper triangle of A is stored.
 | |
| *
 | |
|          KPLUS1 = K + 1
 | |
|          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | |
|             DO 60 J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                L = KPLUS1 - J
 | |
|                DO 50 I = MAX( 1, J-K ), J - 1
 | |
|                   Y( I ) = Y( I ) + TEMP1*A( L+I, J )
 | |
|                   TEMP2 = TEMP2 + A( L+I, J )*X( I )
 | |
|    50          CONTINUE
 | |
|                Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 80 J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                IX = KX
 | |
|                IY = KY
 | |
|                L = KPLUS1 - J
 | |
|                DO 70 I = MAX( 1, J-K ), J - 1
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
 | |
|                   TEMP2 = TEMP2 + A( L+I, J )*X( IX )
 | |
|                   IX = IX + INCX
 | |
|                   IY = IY + INCY
 | |
|    70          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|                IF( J.GT.K ) THEN
 | |
|                   KX = KX + INCX
 | |
|                   KY = KY + INCY
 | |
|                END IF
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when lower triangle of A is stored.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | |
|             DO 100 J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                Y( J ) = Y( J ) + TEMP1*A( 1, J )
 | |
|                L = 1 - J
 | |
|                DO 90 I = J + 1, MIN( N, J+K )
 | |
|                   Y( I ) = Y( I ) + TEMP1*A( L+I, J )
 | |
|                   TEMP2 = TEMP2 + A( L+I, J )*X( I )
 | |
|    90          CONTINUE
 | |
|                Y( J ) = Y( J ) + ALPHA*TEMP2
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 120 J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
 | |
|                L = 1 - J
 | |
|                IX = JX
 | |
|                IY = JY
 | |
|                DO 110 I = J + 1, MIN( N, J+K )
 | |
|                   IX = IX + INCX
 | |
|                   IY = IY + INCY
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
 | |
|                   TEMP2 = TEMP2 + A( L+I, J )*X( IX )
 | |
|   110          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSBMV
 | |
| *
 | |
|       END
 |