262 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZQRT04
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZQRT04(M,N,NB,RESULT)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER M, N, NB, LDT
 | |
| *       .. Return values ..
 | |
| *       DOUBLE PRECISION RESULT(6)
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZQRT04 tests ZGEQRT and ZGEMQRT.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          Number of rows in test matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          Number of columns in test matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          Block size of test matrix.  NB <= Min(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (6)
 | |
| *>          Results of each of the six tests below.
 | |
| *>
 | |
| *>          RESULT(1) = | A - Q R |
 | |
| *>          RESULT(2) = | I - Q^H Q |
 | |
| *>          RESULT(3) = | Q C - Q C |
 | |
| *>          RESULT(4) = | Q^H C - Q^H C |
 | |
| *>          RESULT(5) = | C Q - C Q | 
 | |
| *>          RESULT(6) = | C Q^H - C Q^H |
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZQRT04(M,N,NB,RESULT)
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER M, N, NB, LDT
 | |
| *     .. Return values ..
 | |
|       DOUBLE PRECISION RESULT(6)
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local allocatable arrays 
 | |
|       COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
 | |
|      $  R(:,:), RWORK(:), WORK( : ), T(:,:), 
 | |
|      $  CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION ZERO
 | |
|       COMPLEX*16 ONE, CZERO
 | |
|       PARAMETER( ZERO = 0.0, ONE = (1.0,0.0), CZERO=(0.0,0.0) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER INFO, J, K, L, LWORK
 | |
|       DOUBLE PRECISION   ANORM, EPS, RESID, CNORM, DNORM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION DLAMCH 
 | |
|       DOUBLE PRECISION ZLANGE, ZLANSY
 | |
|       LOGICAL  LSAME
 | |
|       EXTERNAL DLAMCH, ZLANGE, ZLANSY, LSAME
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC  MAX, MIN      
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA ISEED / 1988, 1989, 1990, 1991 /      
 | |
| *      
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       K = MIN(M,N)
 | |
|       L = MAX(M,N)
 | |
|       LWORK = MAX(2,L)*MAX(2,L)*NB
 | |
| *
 | |
| *     Dynamically allocate local arrays
 | |
| *
 | |
|       ALLOCATE ( A(M,N), AF(M,N), Q(M,M), R(M,L), RWORK(L), 
 | |
|      $           WORK(LWORK), T(NB,N), C(M,N), CF(M,N), 
 | |
|      $           D(N,M), DF(N,M) )
 | |
| *
 | |
| *     Put random numbers into A and copy to AF
 | |
| *
 | |
|       LDT=NB
 | |
|       DO J=1,N
 | |
|          CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
 | |
|       END DO
 | |
|       CALL ZLACPY( 'Full', M, N, A, M, AF, M )
 | |
| *
 | |
| *     Factor the matrix A in the array AF.
 | |
| *
 | |
|       CALL ZGEQRT( M, N, NB, AF, M, T, LDT, WORK, INFO )
 | |
| *
 | |
| *     Generate the m-by-m matrix Q
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, CZERO, ONE, Q, M )
 | |
|       CALL ZGEMQRT( 'R', 'N', M, M, K, NB, AF, M, T, LDT, Q, M,
 | |
|      $              WORK, INFO )
 | |
| *
 | |
| *     Copy R
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
 | |
|       CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
 | |
| *
 | |
| *     Compute |R - Q'*A| / |A| and store in RESULT(1)
 | |
| *
 | |
|       CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
 | |
|       ANORM = ZLANGE( '1', M, N, A, M, RWORK )
 | |
|       RESID = ZLANGE( '1', M, N, R, M, RWORK )
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
|          RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
 | |
|       ELSE
 | |
|          RESULT( 1 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute |I - Q'*Q| and store in RESULT(2)
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, CZERO, ONE, R, M )
 | |
|       CALL ZHERK( 'U', 'C', M, M, DREAL(-ONE), Q, M, DREAL(ONE), R, M )
 | |
|       RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
 | |
|       RESULT( 2 ) = RESID / (EPS*MAX(1,M))
 | |
| *
 | |
| *     Generate random m-by-n matrix C and a copy CF
 | |
| *
 | |
|       DO J=1,N
 | |
|          CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
 | |
|       END DO
 | |
|       CNORM = ZLANGE( '1', M, N, C, M, RWORK)
 | |
|       CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | |
| *
 | |
| *     Apply Q to C as Q*C
 | |
| *
 | |
|       CALL ZGEMQRT( 'L', 'N', M, N, K, NB, AF, M, T, NB, CF, M, 
 | |
|      $             WORK, INFO)
 | |
| *
 | |
| *     Compute |Q*C - Q*C| / |C|
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
 | |
|       RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 3 ) = RESID / (EPS*MAX(1,M)*CNORM)
 | |
|       ELSE
 | |
|          RESULT( 3 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Copy C into CF again
 | |
| *
 | |
|       CALL ZLACPY( 'Full', M, N, C, M, CF, M )
 | |
| *
 | |
| *     Apply Q to C as QT*C
 | |
| *
 | |
|       CALL ZGEMQRT( 'L', 'C', M, N, K, NB, AF, M, T, NB, CF, M, 
 | |
|      $             WORK, INFO)
 | |
| *
 | |
| *     Compute |QT*C - QT*C| / |C|
 | |
| *
 | |
|       CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
 | |
|       RESID = ZLANGE( '1', M, N, CF, M, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 4 ) = RESID / (EPS*MAX(1,M)*CNORM)
 | |
|       ELSE
 | |
|          RESULT( 4 ) = ZERO
 | |
|       END IF     
 | |
| *
 | |
| *     Generate random n-by-m matrix D and a copy DF
 | |
| *
 | |
|       DO J=1,M
 | |
|          CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
 | |
|       END DO
 | |
|       DNORM = ZLANGE( '1', N, M, D, N, RWORK)
 | |
|       CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | |
| *
 | |
| *     Apply Q to D as D*Q
 | |
| *
 | |
|       CALL ZGEMQRT( 'R', 'N', N, M, K, NB, AF, M, T, NB, DF, N, 
 | |
|      $             WORK, INFO)      
 | |
| *
 | |
| *     Compute |D*Q - D*Q| / |D|
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
 | |
|       RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
 | |
|       ELSE
 | |
|          RESULT( 5 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Copy D into DF again
 | |
| *
 | |
|       CALL ZLACPY( 'Full', N, M, D, N, DF, N )
 | |
| *
 | |
| *     Apply Q to D as D*QT
 | |
| *
 | |
|       CALL ZGEMQRT( 'R', 'C', N, M, K, NB, AF, M, T, NB, DF, N, 
 | |
|      $             WORK, INFO)      
 | |
| *
 | |
| *     Compute |D*QT - D*QT| / |D|
 | |
| *
 | |
|       CALL ZGEMM( 'N', 'C', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
 | |
|       RESID = ZLANGE( '1', N, M, DF, N, RWORK )
 | |
|       IF( CNORM.GT.ZERO ) THEN
 | |
|          RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
 | |
|       ELSE
 | |
|          RESULT( 6 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Deallocate all arrays
 | |
| *
 | |
|       DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
 | |
| *
 | |
|       RETURN
 | |
|       END
 | |
| 
 |