241 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPOT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDA, LDAFAC, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPOT01 reconstructs a Hermitian positive definite matrix  A  from
 | |
| *> its L*L' or U'*U factorization and computes the residual
 | |
| *>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | |
| *>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon, L' is the conjugate transpose of L,
 | |
| *> and U' is the conjugate transpose of U.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The original Hermitian matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | |
| *>          On entry, the factor L or U from the L*L' or U'*U
 | |
| *>          factorization of A.
 | |
| *>          Overwritten with the reconstructed matrix, and then with the
 | |
| *>          difference L*L' - A (or U'*U - A).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDA, LDAFAC, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       DOUBLE PRECISION   ANORM, EPS, TR
 | |
|       COMPLEX*16         TC
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANHE
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANHE, ZDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZHER, ZSCAL, ZTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DIMAG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check the imaginary parts of the diagonal elements and return with
 | |
| *     an error code if any are nonzero.
 | |
| *
 | |
|       DO 10 J = 1, N
 | |
|          IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
 | |
|             RESID = ONE / EPS
 | |
|             RETURN
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute the product U'*U, overwriting U.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 20 K = N, 1, -1
 | |
| *
 | |
| *           Compute the (K,K) element of the result.
 | |
| *
 | |
|             TR = ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
 | |
|             AFAC( K, K ) = TR
 | |
| *
 | |
| *           Compute the rest of column K.
 | |
| *
 | |
|             CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
 | |
|      $                  LDAFAC, AFAC( 1, K ), 1 )
 | |
| *
 | |
|    20    CONTINUE
 | |
| *
 | |
| *     Compute the product L*L', overwriting L.
 | |
| *
 | |
|       ELSE
 | |
|          DO 30 K = N, 1, -1
 | |
| *
 | |
| *           Add a multiple of column K of the factor L to each of
 | |
| *           columns K+1 through N.
 | |
| *
 | |
|             IF( K+1.LE.N )
 | |
|      $         CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
 | |
|      $                    AFAC( K+1, K+1 ), LDAFAC )
 | |
| *
 | |
| *           Scale column K by the diagonal element.
 | |
| *
 | |
|             TC = AFAC( K, K )
 | |
|             CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 )
 | |
| *
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the difference  L*L' - A (or U'*U - A).
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 50 J = 1, N
 | |
|             DO 40 I = 1, J - 1
 | |
|                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    40       CONTINUE
 | |
|             AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) )
 | |
|    50    CONTINUE
 | |
|       ELSE
 | |
|          DO 70 J = 1, N
 | |
|             AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) )
 | |
|             DO 60 I = J + 1, N
 | |
|                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = ZLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPOT01
 | |
| *
 | |
|       END
 |