221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGET01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDAFAC, M, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGET01 reconstructs a matrix A from its L*U factorization and
 | |
| *> computes the residual
 | |
| *>    norm(L*U - A) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The original M x N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | |
| *>          The factored form of the matrix A.  AFAC contains the factors
 | |
| *>          L and U from the L*U factorization as computed by ZGETRF.
 | |
| *>          Overwritten with the reconstructed matrix, and then with the
 | |
| *>          difference L*U - A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from ZGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(L*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDAFAC, M, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CONE
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       DOUBLE PRECISION   ANORM, EPS
 | |
|       COMPLEX*16         T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       COMPLEX*16         ZDOTU
 | |
|       EXTERNAL           DLAMCH, ZLANGE, ZDOTU
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMV, ZLASWP, ZSCAL, ZTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if M = 0 or N = 0.
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Compute the product L*U and overwrite AFAC with the result.
 | |
| *     A column at a time of the product is obtained, starting with
 | |
| *     column N.
 | |
| *
 | |
|       DO 10 K = N, 1, -1
 | |
|          IF( K.GT.M ) THEN
 | |
|             CALL ZTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
 | |
|      $                  LDAFAC, AFAC( 1, K ), 1 )
 | |
|          ELSE
 | |
| *
 | |
| *           Compute elements (K+1:M,K)
 | |
| *
 | |
|             T = AFAC( K, K )
 | |
|             IF( K+1.LE.M ) THEN
 | |
|                CALL ZSCAL( M-K, T, AFAC( K+1, K ), 1 )
 | |
|                CALL ZGEMV( 'No transpose', M-K, K-1, CONE,
 | |
|      $                     AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1,
 | |
|      $                     CONE, AFAC( K+1, K ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Compute the (K,K) element
 | |
| *
 | |
|             AFAC( K, K ) = T + ZDOTU( K-1, AFAC( K, 1 ), LDAFAC,
 | |
|      $                     AFAC( 1, K ), 1 )
 | |
| *
 | |
| *           Compute elements (1:K-1,K)
 | |
| *
 | |
|             CALL ZTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
 | |
|      $                  LDAFAC, AFAC( 1, K ), 1 )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       CALL ZLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
 | |
| *
 | |
| *     Compute the difference  L*U - A  and store in AFAC.
 | |
| *
 | |
|       DO 30 J = 1, N
 | |
|          DO 20 I = 1, M
 | |
|             AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = ZLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGET01
 | |
| *
 | |
|       END
 |