596 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZDRVGT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
 | |
| *                          B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            NN, NOUT, NRHS
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            IWORK( * ), NVAL( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( * ), AF( * ), B( * ), WORK( * ), X( * ),
 | |
| *      $                   XACT( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZDRVGT tests ZGTSV and -SVX.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (NMAX*4)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX*16 array, dimension (NMAX*4)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension
 | |
| *>                      (NMAX*max(3,NRHS))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
 | |
|      $                   B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            NN, NOUT, NRHS
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            IWORK( * ), NVAL( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( * ), AF( * ), B( * ), WORK( * ), X( * ),
 | |
|      $                   XACT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NTYPES
 | |
|       PARAMETER          ( NTYPES = 12 )
 | |
|       INTEGER            NTESTS
 | |
|       PARAMETER          ( NTESTS = 6 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            TRFCON, ZEROT
 | |
|       CHARACTER          DIST, FACT, TRANS, TYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
 | |
|      $                   K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
 | |
|      $                   NFAIL, NIMAT, NRUN, NT
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
 | |
|      $                   RCONDC, RCONDI, RCONDO
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          TRANSS( 3 )
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | |
|       DOUBLE PRECISION   RESULT( NTESTS ), Z( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DGET06, DZASUM, ZLANGT
 | |
|       EXTERNAL           DGET06, DZASUM, ZLANGT
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALADHD, ALAERH, ALASVM, ZCOPY, ZDSCAL, ZERRVX,
 | |
|      $                   ZGET04, ZGTSV, ZGTSVX, ZGTT01, ZGTT02, ZGTT05,
 | |
|      $                   ZGTTRF, ZGTTRS, ZLACPY, ZLAGTM, ZLARNV, ZLASET,
 | |
|      $                   ZLATB4, ZLATMS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCMPLX, MAX
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, NUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
 | |
|      $                   'C' /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Zomplex precision'
 | |
|       PATH( 2: 3 ) = 'GT'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       IF( TSTERR )
 | |
|      $   CALL ZERRVX( PATH, NOUT )
 | |
|       INFOT = 0
 | |
| *
 | |
|       DO 140 IN = 1, NN
 | |
| *
 | |
| *        Do for each value of N in NVAL.
 | |
| *
 | |
|          N = NVAL( IN )
 | |
|          M = MAX( N-1, 0 )
 | |
|          LDA = MAX( 1, N )
 | |
|          NIMAT = NTYPES
 | |
|          IF( N.LE.0 )
 | |
|      $      NIMAT = 1
 | |
| *
 | |
|          DO 130 IMAT = 1, NIMAT
 | |
| *
 | |
| *           Do the tests only if DOTYPE( IMAT ) is true.
 | |
| *
 | |
|             IF( .NOT.DOTYPE( IMAT ) )
 | |
|      $         GO TO 130
 | |
| *
 | |
| *           Set up parameters with ZLATB4.
 | |
| *
 | |
|             CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | |
|      $                   COND, DIST )
 | |
| *
 | |
|             ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | |
|             IF( IMAT.LE.6 ) THEN
 | |
| *
 | |
| *              Types 1-6:  generate matrices of known condition number.
 | |
| *
 | |
|                KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
 | |
|                SRNAMT = 'ZLATMS'
 | |
|                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | |
|      $                      ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Check the error code from ZLATMS.
 | |
| *
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
 | |
|      $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
|                   GO TO 130
 | |
|                END IF
 | |
|                IZERO = 0
 | |
| *
 | |
|                IF( N.GT.1 ) THEN
 | |
|                   CALL ZCOPY( N-1, AF( 4 ), 3, A, 1 )
 | |
|                   CALL ZCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
 | |
|                END IF
 | |
|                CALL ZCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
 | |
|             ELSE
 | |
| *
 | |
| *              Types 7-12:  generate tridiagonal matrices with
 | |
| *              unknown condition numbers.
 | |
| *
 | |
|                IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | |
| *
 | |
| *                 Generate a matrix with elements from [-1,1].
 | |
| *
 | |
|                   CALL ZLARNV( 2, ISEED, N+2*M, A )
 | |
|                   IF( ANORM.NE.ONE )
 | |
|      $               CALL ZDSCAL( N+2*M, ANORM, A, 1 )
 | |
|                ELSE IF( IZERO.GT.0 ) THEN
 | |
| *
 | |
| *                 Reuse the last matrix by copying back the zeroed out
 | |
| *                 elements.
 | |
| *
 | |
|                   IF( IZERO.EQ.1 ) THEN
 | |
|                      A( N ) = Z( 2 )
 | |
|                      IF( N.GT.1 )
 | |
|      $                  A( 1 ) = Z( 3 )
 | |
|                   ELSE IF( IZERO.EQ.N ) THEN
 | |
|                      A( 3*N-2 ) = Z( 1 )
 | |
|                      A( 2*N-1 ) = Z( 2 )
 | |
|                   ELSE
 | |
|                      A( 2*N-2+IZERO ) = Z( 1 )
 | |
|                      A( N-1+IZERO ) = Z( 2 )
 | |
|                      A( IZERO ) = Z( 3 )
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              If IMAT > 7, set one column of the matrix to 0.
 | |
| *
 | |
|                IF( .NOT.ZEROT ) THEN
 | |
|                   IZERO = 0
 | |
|                ELSE IF( IMAT.EQ.8 ) THEN
 | |
|                   IZERO = 1
 | |
|                   Z( 2 ) = A( N )
 | |
|                   A( N ) = ZERO
 | |
|                   IF( N.GT.1 ) THEN
 | |
|                      Z( 3 ) = A( 1 )
 | |
|                      A( 1 ) = ZERO
 | |
|                   END IF
 | |
|                ELSE IF( IMAT.EQ.9 ) THEN
 | |
|                   IZERO = N
 | |
|                   Z( 1 ) = A( 3*N-2 )
 | |
|                   Z( 2 ) = A( 2*N-1 )
 | |
|                   A( 3*N-2 ) = ZERO
 | |
|                   A( 2*N-1 ) = ZERO
 | |
|                ELSE
 | |
|                   IZERO = ( N+1 ) / 2
 | |
|                   DO 20 I = IZERO, N - 1
 | |
|                      A( 2*N-2+I ) = ZERO
 | |
|                      A( N-1+I ) = ZERO
 | |
|                      A( I ) = ZERO
 | |
|    20             CONTINUE
 | |
|                   A( 3*N-2 ) = ZERO
 | |
|                   A( 2*N-1 ) = ZERO
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             DO 120 IFACT = 1, 2
 | |
|                IF( IFACT.EQ.1 ) THEN
 | |
|                   FACT = 'F'
 | |
|                ELSE
 | |
|                   FACT = 'N'
 | |
|                END IF
 | |
| *
 | |
| *              Compute the condition number for comparison with
 | |
| *              the value returned by ZGTSVX.
 | |
| *
 | |
|                IF( ZEROT ) THEN
 | |
|                   IF( IFACT.EQ.1 )
 | |
|      $               GO TO 120
 | |
|                   RCONDO = ZERO
 | |
|                   RCONDI = ZERO
 | |
| *
 | |
|                ELSE IF( IFACT.EQ.1 ) THEN
 | |
|                   CALL ZCOPY( N+2*M, A, 1, AF, 1 )
 | |
| *
 | |
| *                 Compute the 1-norm and infinity-norm of A.
 | |
| *
 | |
|                   ANORMO = ZLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
 | |
|                   ANORMI = ZLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
 | |
| *
 | |
| *                 Factor the matrix A.
 | |
| *
 | |
|                   CALL ZGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
 | |
|      $                         AF( N+2*M+1 ), IWORK, INFO )
 | |
| *
 | |
| *                 Use ZGTTRS to solve for one column at a time of
 | |
| *                 inv(A), computing the maximum column sum as we go.
 | |
| *
 | |
|                   AINVNM = ZERO
 | |
|                   DO 40 I = 1, N
 | |
|                      DO 30 J = 1, N
 | |
|                         X( J ) = ZERO
 | |
|    30                CONTINUE
 | |
|                      X( I ) = ONE
 | |
|                      CALL ZGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
 | |
|      $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | |
|      $                            LDA, INFO )
 | |
|                      AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
 | |
|    40             CONTINUE
 | |
| *
 | |
| *                 Compute the 1-norm condition number of A.
 | |
| *
 | |
|                   IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                      RCONDO = ONE
 | |
|                   ELSE
 | |
|                      RCONDO = ( ONE / ANORMO ) / AINVNM
 | |
|                   END IF
 | |
| *
 | |
| *                 Use ZGTTRS to solve for one column at a time of
 | |
| *                 inv(A'), computing the maximum column sum as we go.
 | |
| *
 | |
|                   AINVNM = ZERO
 | |
|                   DO 60 I = 1, N
 | |
|                      DO 50 J = 1, N
 | |
|                         X( J ) = ZERO
 | |
|    50                CONTINUE
 | |
|                      X( I ) = ONE
 | |
|                      CALL ZGTTRS( 'Conjugate transpose', N, 1, AF,
 | |
|      $                            AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
 | |
|      $                            IWORK, X, LDA, INFO )
 | |
|                      AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
 | |
|    60             CONTINUE
 | |
| *
 | |
| *                 Compute the infinity-norm condition number of A.
 | |
| *
 | |
|                   IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                      RCONDI = ONE
 | |
|                   ELSE
 | |
|                      RCONDI = ( ONE / ANORMI ) / AINVNM
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                DO 110 ITRAN = 1, 3
 | |
|                   TRANS = TRANSS( ITRAN )
 | |
|                   IF( ITRAN.EQ.1 ) THEN
 | |
|                      RCONDC = RCONDO
 | |
|                   ELSE
 | |
|                      RCONDC = RCONDI
 | |
|                   END IF
 | |
| *
 | |
| *                 Generate NRHS random solution vectors.
 | |
| *
 | |
|                   IX = 1
 | |
|                   DO 70 J = 1, NRHS
 | |
|                      CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
 | |
|                      IX = IX + LDA
 | |
|    70             CONTINUE
 | |
| *
 | |
| *                 Set the right hand side.
 | |
| *
 | |
|                   CALL ZLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
 | |
|      $                         A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
 | |
| *
 | |
|                   IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
 | |
| *
 | |
| *                    --- Test ZGTSV  ---
 | |
| *
 | |
| *                    Solve the system using Gaussian elimination with
 | |
| *                    partial pivoting.
 | |
| *
 | |
|                      CALL ZCOPY( N+2*M, A, 1, AF, 1 )
 | |
|                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | |
| *
 | |
|                      SRNAMT = 'ZGTSV '
 | |
|                      CALL ZGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
 | |
|      $                           LDA, INFO )
 | |
| *
 | |
| *                    Check error code from ZGTSV .
 | |
| *
 | |
|                      IF( INFO.NE.IZERO )
 | |
|      $                  CALL ALAERH( PATH, 'ZGTSV ', INFO, IZERO, ' ',
 | |
|      $                               N, N, 1, 1, NRHS, IMAT, NFAIL,
 | |
|      $                               NERRS, NOUT )
 | |
|                      NT = 1
 | |
|                      IF( IZERO.EQ.0 ) THEN
 | |
| *
 | |
| *                       Check residual of computed solution.
 | |
| *
 | |
|                         CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
 | |
|      $                               LDA )
 | |
|                         CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ),
 | |
|      $                               A( N+M+1 ), X, LDA, WORK, LDA,
 | |
|      $                               RESULT( 2 ) )
 | |
| *
 | |
| *                       Check solution from generated exact solution.
 | |
| *
 | |
|                         CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                               RESULT( 3 ) )
 | |
|                         NT = 3
 | |
|                      END IF
 | |
| *
 | |
| *                    Print information about the tests that did not pass
 | |
| *                    the threshold.
 | |
| *
 | |
|                      DO 80 K = 2, NT
 | |
|                         IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALADHD( NOUT, PATH )
 | |
|                            WRITE( NOUT, FMT = 9999 )'ZGTSV ', N, IMAT,
 | |
|      $                        K, RESULT( K )
 | |
|                            NFAIL = NFAIL + 1
 | |
|                         END IF
 | |
|    80                CONTINUE
 | |
|                      NRUN = NRUN + NT - 1
 | |
|                   END IF
 | |
| *
 | |
| *                 --- Test ZGTSVX ---
 | |
| *
 | |
|                   IF( IFACT.GT.1 ) THEN
 | |
| *
 | |
| *                    Initialize AF to zero.
 | |
| *
 | |
|                      DO 90 I = 1, 3*N - 2
 | |
|                         AF( I ) = ZERO
 | |
|    90                CONTINUE
 | |
|                   END IF
 | |
|                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
 | |
|      $                         DCMPLX( ZERO ), X, LDA )
 | |
| *
 | |
| *                 Solve the system and compute the condition number and
 | |
| *                 error bounds using ZGTSVX.
 | |
| *
 | |
|                   SRNAMT = 'ZGTSVX'
 | |
|                   CALL ZGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
 | |
|      $                         A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
 | |
|      $                         AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
 | |
|      $                         RCOND, RWORK, RWORK( NRHS+1 ), WORK,
 | |
|      $                         RWORK( 2*NRHS+1 ), INFO )
 | |
| *
 | |
| *                 Check the error code from ZGTSVX.
 | |
| *
 | |
|                   IF( INFO.NE.IZERO )
 | |
|      $               CALL ALAERH( PATH, 'ZGTSVX', INFO, IZERO,
 | |
|      $                            FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
 | |
|      $                            NFAIL, NERRS, NOUT )
 | |
| *
 | |
|                   IF( IFACT.GE.2 ) THEN
 | |
| *
 | |
| *                    Reconstruct matrix from factors and compute
 | |
| *                    residual.
 | |
| *
 | |
|                      CALL ZGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
 | |
|      $                            AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
 | |
|      $                            IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
 | |
|                      K1 = 1
 | |
|                   ELSE
 | |
|                      K1 = 2
 | |
|                   END IF
 | |
| *
 | |
|                   IF( INFO.EQ.0 ) THEN
 | |
|                      TRFCON = .FALSE.
 | |
| *
 | |
| *                    Check residual of computed solution.
 | |
| *
 | |
|                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | |
|                      CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ),
 | |
|      $                            A( N+M+1 ), X, LDA, WORK, LDA,
 | |
|      $                            RESULT( 2 ) )
 | |
| *
 | |
| *                    Check solution from generated exact solution.
 | |
| *
 | |
|                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                            RESULT( 3 ) )
 | |
| *
 | |
| *                    Check the error bounds from iterative refinement.
 | |
| *
 | |
|                      CALL ZGTT05( TRANS, N, NRHS, A, A( M+1 ),
 | |
|      $                            A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
 | |
|      $                            RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
 | |
|                      NT = 5
 | |
|                   END IF
 | |
| *
 | |
| *                 Print information about the tests that did not pass
 | |
| *                 the threshold.
 | |
| *
 | |
|                   DO 100 K = K1, NT
 | |
|                      IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                     CALL ALADHD( NOUT, PATH )
 | |
|                         WRITE( NOUT, FMT = 9998 )'ZGTSVX', FACT, TRANS,
 | |
|      $                     N, IMAT, K, RESULT( K )
 | |
|                         NFAIL = NFAIL + 1
 | |
|                      END IF
 | |
|   100             CONTINUE
 | |
| *
 | |
| *                 Check the reciprocal of the condition number.
 | |
| *
 | |
|                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | |
|                   IF( RESULT( 6 ).GE.THRESH ) THEN
 | |
|                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                  CALL ALADHD( NOUT, PATH )
 | |
|                      WRITE( NOUT, FMT = 9998 )'ZGTSVX', FACT, TRANS, N,
 | |
|      $                  IMAT, K, RESULT( K )
 | |
|                      NFAIL = NFAIL + 1
 | |
|                   END IF
 | |
|                   NRUN = NRUN + NT - K1 + 2
 | |
| *
 | |
|   110          CONTINUE
 | |
|   120       CONTINUE
 | |
|   130    CONTINUE
 | |
|   140 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
|  9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
 | |
|      $      ', ratio = ', G12.5 )
 | |
|  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
 | |
|      $      I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZDRVGT
 | |
| *
 | |
|       END
 |