1036 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1036 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZDRVGBX
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
 | |
| *                          AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
 | |
| *                          RWORK, IWORK, NOUT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            LA, LAFB, NN, NOUT, NRHS
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            IWORK( * ), NVAL( * )
 | |
| *       DOUBLE PRECISION   RWORK( * ), S( * )
 | |
| *       COMPLEX*16         A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
 | |
| *      $                   WORK( * ), X( * ), XACT( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZDRVGB tests the driver routines ZGBSV, -SVX, and -SVXX.
 | |
| *>
 | |
| *> Note that this file is used only when the XBLAS are available,
 | |
| *> otherwise zdrvgb.f defines this subroutine.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix column dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand side vectors to be generated for
 | |
| *>          each linear system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LA)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LA
 | |
| *> \verbatim
 | |
| *>          LA is INTEGER
 | |
| *>          The length of the array A.  LA >= (2*NMAX-1)*NMAX
 | |
| *>          where NMAX is the largest entry in NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AFB
 | |
| *> \verbatim
 | |
| *>          AFB is COMPLEX*16 array, dimension (LAFB)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LAFB
 | |
| *> \verbatim
 | |
| *>          LAFB is INTEGER
 | |
| *>          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX
 | |
| *>          where NMAX is the largest entry in NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ASAV
 | |
| *> \verbatim
 | |
| *>          ASAV is COMPLEX*16 array, dimension (LA)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BSAV
 | |
| *> \verbatim
 | |
| *>          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (2*NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension
 | |
| *>                      (NMAX*max(3,NRHS,NMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (max(NMAX,2*NRHS))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
 | |
|      $                   AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
 | |
|      $                   RWORK, IWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            LA, LAFB, NN, NOUT, NRHS
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            IWORK( * ), NVAL( * )
 | |
|       DOUBLE PRECISION   RWORK( * ), S( * )
 | |
|       COMPLEX*16         A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
 | |
|      $                   WORK( * ), X( * ), XACT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NTYPES
 | |
|       PARAMETER          ( NTYPES = 8 )
 | |
|       INTEGER            NTESTS
 | |
|       PARAMETER          ( NTESTS = 7 )
 | |
|       INTEGER            NTRAN
 | |
|       PARAMETER          ( NTRAN = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
 | |
|       CHARACTER          DIST, EQUED, FACT, TRANS, TYPE, XTYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
 | |
|      $                   INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
 | |
|      $                   LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
 | |
|      $                   NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT,
 | |
|      $                   N_ERR_BNDS
 | |
|       DOUBLE PRECISION   AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
 | |
|      $                   CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
 | |
|      $                   ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW,
 | |
|      $                   RPVGRW_SVXX
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | |
|       DOUBLE PRECISION   RDUM( 1 ), RESULT( NTESTS ), BERR( NRHS ),
 | |
|      $                   ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DGET06, DLAMCH, ZLANGB, ZLANGE, ZLANTB,
 | |
|      $                   ZLA_GBRPVGRW
 | |
|       EXTERNAL           LSAME, DGET06, DLAMCH, ZLANGB, ZLANGE, ZLANTB,
 | |
|      $                   ZLA_GBRPVGRW
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGBEQU,
 | |
|      $                   ZGBSV, ZGBSVX, ZGBT01, ZGBT02, ZGBT05, ZGBTRF,
 | |
|      $                   ZGBTRS, ZGET04, ZLACPY, ZLAQGB, ZLARHS, ZLASET,
 | |
|      $                   ZLATB4, ZLATMS, ZGBSVXX
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DCMPLX, MAX, MIN
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, NUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
 | |
|       DATA               TRANSS / 'N', 'T', 'C' /
 | |
|       DATA               FACTS / 'F', 'N', 'E' /
 | |
|       DATA               EQUEDS / 'N', 'R', 'C', 'B' /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Initialize constants and the random number seed.
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Zomplex precision'
 | |
|       PATH( 2: 3 ) = 'GB'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       IF( TSTERR )
 | |
|      $   CALL ZERRVX( PATH, NOUT )
 | |
|       INFOT = 0
 | |
| *
 | |
| *     Set the block size and minimum block size for testing.
 | |
| *
 | |
|       NB = 1
 | |
|       NBMIN = 2
 | |
|       CALL XLAENV( 1, NB )
 | |
|       CALL XLAENV( 2, NBMIN )
 | |
| *
 | |
| *     Do for each value of N in NVAL
 | |
| *
 | |
|       DO 150 IN = 1, NN
 | |
|          N = NVAL( IN )
 | |
|          LDB = MAX( N, 1 )
 | |
|          XTYPE = 'N'
 | |
| *
 | |
| *        Set limits on the number of loop iterations.
 | |
| *
 | |
|          NKL = MAX( 1, MIN( N, 4 ) )
 | |
|          IF( N.EQ.0 )
 | |
|      $      NKL = 1
 | |
|          NKU = NKL
 | |
|          NIMAT = NTYPES
 | |
|          IF( N.LE.0 )
 | |
|      $      NIMAT = 1
 | |
| *
 | |
|          DO 140 IKL = 1, NKL
 | |
| *
 | |
| *           Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
 | |
| *           it easier to skip redundant values for small values of N.
 | |
| *
 | |
|             IF( IKL.EQ.1 ) THEN
 | |
|                KL = 0
 | |
|             ELSE IF( IKL.EQ.2 ) THEN
 | |
|                KL = MAX( N-1, 0 )
 | |
|             ELSE IF( IKL.EQ.3 ) THEN
 | |
|                KL = ( 3*N-1 ) / 4
 | |
|             ELSE IF( IKL.EQ.4 ) THEN
 | |
|                KL = ( N+1 ) / 4
 | |
|             END IF
 | |
|             DO 130 IKU = 1, NKU
 | |
| *
 | |
| *              Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
 | |
| *              makes it easier to skip redundant values for small
 | |
| *              values of N.
 | |
| *
 | |
|                IF( IKU.EQ.1 ) THEN
 | |
|                   KU = 0
 | |
|                ELSE IF( IKU.EQ.2 ) THEN
 | |
|                   KU = MAX( N-1, 0 )
 | |
|                ELSE IF( IKU.EQ.3 ) THEN
 | |
|                   KU = ( 3*N-1 ) / 4
 | |
|                ELSE IF( IKU.EQ.4 ) THEN
 | |
|                   KU = ( N+1 ) / 4
 | |
|                END IF
 | |
| *
 | |
| *              Check that A and AFB are big enough to generate this
 | |
| *              matrix.
 | |
| *
 | |
|                LDA = KL + KU + 1
 | |
|                LDAFB = 2*KL + KU + 1
 | |
|                IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
 | |
|                   IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $               CALL ALADHD( NOUT, PATH )
 | |
|                   IF( LDA*N.GT.LA ) THEN
 | |
|                      WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
 | |
|      $                  N*( KL+KU+1 )
 | |
|                      NERRS = NERRS + 1
 | |
|                   END IF
 | |
|                   IF( LDAFB*N.GT.LAFB ) THEN
 | |
|                      WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
 | |
|      $                  N*( 2*KL+KU+1 )
 | |
|                      NERRS = NERRS + 1
 | |
|                   END IF
 | |
|                   GO TO 130
 | |
|                END IF
 | |
| *
 | |
|                DO 120 IMAT = 1, NIMAT
 | |
| *
 | |
| *                 Do the tests only if DOTYPE( IMAT ) is true.
 | |
| *
 | |
|                   IF( .NOT.DOTYPE( IMAT ) )
 | |
|      $               GO TO 120
 | |
| *
 | |
| *                 Skip types 2, 3, or 4 if the matrix is too small.
 | |
| *
 | |
|                   ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
 | |
|                   IF( ZEROT .AND. N.LT.IMAT-1 )
 | |
|      $               GO TO 120
 | |
| *
 | |
| *                 Set up parameters with ZLATB4 and generate a
 | |
| *                 test matrix with ZLATMS.
 | |
| *
 | |
|                   CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
 | |
|      $                         MODE, CNDNUM, DIST )
 | |
|                   RCONDC = ONE / CNDNUM
 | |
| *
 | |
|                   SRNAMT = 'ZLATMS'
 | |
|                   CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
 | |
|      $                         CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
 | |
|      $                         INFO )
 | |
| *
 | |
| *                 Check the error code from ZLATMS.
 | |
| *
 | |
|                   IF( INFO.NE.0 ) THEN
 | |
|                      CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N,
 | |
|      $                            KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
|                      GO TO 120
 | |
|                   END IF
 | |
| *
 | |
| *                 For types 2, 3, and 4, zero one or more columns of
 | |
| *                 the matrix to test that INFO is returned correctly.
 | |
| *
 | |
|                   IZERO = 0
 | |
|                   IF( ZEROT ) THEN
 | |
|                      IF( IMAT.EQ.2 ) THEN
 | |
|                         IZERO = 1
 | |
|                      ELSE IF( IMAT.EQ.3 ) THEN
 | |
|                         IZERO = N
 | |
|                      ELSE
 | |
|                         IZERO = N / 2 + 1
 | |
|                      END IF
 | |
|                      IOFF = ( IZERO-1 )*LDA
 | |
|                      IF( IMAT.LT.4 ) THEN
 | |
|                         I1 = MAX( 1, KU+2-IZERO )
 | |
|                         I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
 | |
|                         DO 20 I = I1, I2
 | |
|                            A( IOFF+I ) = ZERO
 | |
|    20                   CONTINUE
 | |
|                      ELSE
 | |
|                         DO 40 J = IZERO, N
 | |
|                            DO 30 I = MAX( 1, KU+2-J ),
 | |
|      $                             MIN( KL+KU+1, KU+1+( N-J ) )
 | |
|                               A( IOFF+I ) = ZERO
 | |
|    30                      CONTINUE
 | |
|                            IOFF = IOFF + LDA
 | |
|    40                   CONTINUE
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Save a copy of the matrix A in ASAV.
 | |
| *
 | |
|                   CALL ZLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
 | |
| *
 | |
|                   DO 110 IEQUED = 1, 4
 | |
|                      EQUED = EQUEDS( IEQUED )
 | |
|                      IF( IEQUED.EQ.1 ) THEN
 | |
|                         NFACT = 3
 | |
|                      ELSE
 | |
|                         NFACT = 1
 | |
|                      END IF
 | |
| *
 | |
|                      DO 100 IFACT = 1, NFACT
 | |
|                         FACT = FACTS( IFACT )
 | |
|                         PREFAC = LSAME( FACT, 'F' )
 | |
|                         NOFACT = LSAME( FACT, 'N' )
 | |
|                         EQUIL = LSAME( FACT, 'E' )
 | |
| *
 | |
|                         IF( ZEROT ) THEN
 | |
|                            IF( PREFAC )
 | |
|      $                        GO TO 100
 | |
|                            RCONDO = ZERO
 | |
|                            RCONDI = ZERO
 | |
| *
 | |
|                         ELSE IF( .NOT.NOFACT ) THEN
 | |
| *
 | |
| *                          Compute the condition number for comparison
 | |
| *                          with the value returned by DGESVX (FACT =
 | |
| *                          'N' reuses the condition number from the
 | |
| *                          previous iteration with FACT = 'F').
 | |
| *
 | |
|                            CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
 | |
|      $                                  AFB( KL+1 ), LDAFB )
 | |
|                            IF( EQUIL .OR. IEQUED.GT.1 ) THEN
 | |
| *
 | |
| *                             Compute row and column scale factors to
 | |
| *                             equilibrate the matrix A.
 | |
| *
 | |
|                               CALL ZGBEQU( N, N, KL, KU, AFB( KL+1 ),
 | |
|      $                                     LDAFB, S, S( N+1 ), ROWCND,
 | |
|      $                                     COLCND, AMAX, INFO )
 | |
|                               IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
 | |
|                                  IF( LSAME( EQUED, 'R' ) ) THEN
 | |
|                                     ROWCND = ZERO
 | |
|                                     COLCND = ONE
 | |
|                                  ELSE IF( LSAME( EQUED, 'C' ) ) THEN
 | |
|                                     ROWCND = ONE
 | |
|                                     COLCND = ZERO
 | |
|                                  ELSE IF( LSAME( EQUED, 'B' ) ) THEN
 | |
|                                     ROWCND = ZERO
 | |
|                                     COLCND = ZERO
 | |
|                                  END IF
 | |
| *
 | |
| *                                Equilibrate the matrix.
 | |
| *
 | |
|                                  CALL ZLAQGB( N, N, KL, KU, AFB( KL+1 ),
 | |
|      $                                        LDAFB, S, S( N+1 ),
 | |
|      $                                        ROWCND, COLCND, AMAX,
 | |
|      $                                        EQUED )
 | |
|                               END IF
 | |
|                            END IF
 | |
| *
 | |
| *                          Save the condition number of the
 | |
| *                          non-equilibrated system for use in ZGET04.
 | |
| *
 | |
|                            IF( EQUIL ) THEN
 | |
|                               ROLDO = RCONDO
 | |
|                               ROLDI = RCONDI
 | |
|                            END IF
 | |
| *
 | |
| *                          Compute the 1-norm and infinity-norm of A.
 | |
| *
 | |
|                            ANORMO = ZLANGB( '1', N, KL, KU, AFB( KL+1 ),
 | |
|      $                              LDAFB, RWORK )
 | |
|                            ANORMI = ZLANGB( 'I', N, KL, KU, AFB( KL+1 ),
 | |
|      $                              LDAFB, RWORK )
 | |
| *
 | |
| *                          Factor the matrix A.
 | |
| *
 | |
|                            CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
 | |
|      $                                  INFO )
 | |
| *
 | |
| *                          Form the inverse of A.
 | |
| *
 | |
|                            CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
 | |
|      $                                  DCMPLX( ONE ), WORK, LDB )
 | |
|                            SRNAMT = 'ZGBTRS'
 | |
|                            CALL ZGBTRS( 'No transpose', N, KL, KU, N,
 | |
|      $                                  AFB, LDAFB, IWORK, WORK, LDB,
 | |
|      $                                  INFO )
 | |
| *
 | |
| *                          Compute the 1-norm condition number of A.
 | |
| *
 | |
|                            AINVNM = ZLANGE( '1', N, N, WORK, LDB,
 | |
|      $                              RWORK )
 | |
|                            IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                               RCONDO = ONE
 | |
|                            ELSE
 | |
|                               RCONDO = ( ONE / ANORMO ) / AINVNM
 | |
|                            END IF
 | |
| *
 | |
| *                          Compute the infinity-norm condition number
 | |
| *                          of A.
 | |
| *
 | |
|                            AINVNM = ZLANGE( 'I', N, N, WORK, LDB,
 | |
|      $                              RWORK )
 | |
|                            IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                               RCONDI = ONE
 | |
|                            ELSE
 | |
|                               RCONDI = ( ONE / ANORMI ) / AINVNM
 | |
|                            END IF
 | |
|                         END IF
 | |
| *
 | |
|                         DO 90 ITRAN = 1, NTRAN
 | |
| *
 | |
| *                          Do for each value of TRANS.
 | |
| *
 | |
|                            TRANS = TRANSS( ITRAN )
 | |
|                            IF( ITRAN.EQ.1 ) THEN
 | |
|                               RCONDC = RCONDO
 | |
|                            ELSE
 | |
|                               RCONDC = RCONDI
 | |
|                            END IF
 | |
| *
 | |
| *                          Restore the matrix A.
 | |
| *
 | |
|                            CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
 | |
|      $                                  A, LDA )
 | |
| *
 | |
| *                          Form an exact solution and set the right hand
 | |
| *                          side.
 | |
| *
 | |
|                            SRNAMT = 'ZLARHS'
 | |
|                            CALL ZLARHS( PATH, XTYPE, 'Full', TRANS, N,
 | |
|      $                                  N, KL, KU, NRHS, A, LDA, XACT,
 | |
|      $                                  LDB, B, LDB, ISEED, INFO )
 | |
|                            XTYPE = 'C'
 | |
|                            CALL ZLACPY( 'Full', N, NRHS, B, LDB, BSAV,
 | |
|      $                                  LDB )
 | |
| *
 | |
|                            IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
 | |
| *
 | |
| *                             --- Test ZGBSV  ---
 | |
| *
 | |
| *                             Compute the LU factorization of the matrix
 | |
| *                             and solve the system.
 | |
| *
 | |
|                               CALL ZLACPY( 'Full', KL+KU+1, N, A, LDA,
 | |
|      $                                     AFB( KL+1 ), LDAFB )
 | |
|                               CALL ZLACPY( 'Full', N, NRHS, B, LDB, X,
 | |
|      $                                     LDB )
 | |
| *
 | |
|                               SRNAMT = 'ZGBSV '
 | |
|                               CALL ZGBSV( N, KL, KU, NRHS, AFB, LDAFB,
 | |
|      $                                    IWORK, X, LDB, INFO )
 | |
| *
 | |
| *                             Check error code from ZGBSV .
 | |
| *
 | |
|                               IF( INFO.NE.IZERO )
 | |
|      $                           CALL ALAERH( PATH, 'ZGBSV ', INFO,
 | |
|      $                                        IZERO, ' ', N, N, KL, KU,
 | |
|      $                                        NRHS, IMAT, NFAIL, NERRS,
 | |
|      $                                        NOUT )
 | |
| *
 | |
| *                             Reconstruct matrix from factors and
 | |
| *                             compute residual.
 | |
| *
 | |
|                               CALL ZGBT01( N, N, KL, KU, A, LDA, AFB,
 | |
|      $                                     LDAFB, IWORK, WORK,
 | |
|      $                                     RESULT( 1 ) )
 | |
|                               NT = 1
 | |
|                               IF( IZERO.EQ.0 ) THEN
 | |
| *
 | |
| *                                Compute residual of the computed
 | |
| *                                solution.
 | |
| *
 | |
|                                  CALL ZLACPY( 'Full', N, NRHS, B, LDB,
 | |
|      $                                        WORK, LDB )
 | |
|                                  CALL ZGBT02( 'No transpose', N, N, KL,
 | |
|      $                                        KU, NRHS, A, LDA, X, LDB,
 | |
|      $                                        WORK, LDB, RESULT( 2 ) )
 | |
| *
 | |
| *                                Check solution from generated exact
 | |
| *                                solution.
 | |
| *
 | |
|                                  CALL ZGET04( N, NRHS, X, LDB, XACT,
 | |
|      $                                        LDB, RCONDC, RESULT( 3 ) )
 | |
|                                  NT = 3
 | |
|                               END IF
 | |
| *
 | |
| *                             Print information about the tests that did
 | |
| *                             not pass the threshold.
 | |
| *
 | |
|                               DO 50 K = 1, NT
 | |
|                                  IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                                 CALL ALADHD( NOUT, PATH )
 | |
|                                     WRITE( NOUT, FMT = 9997 )'ZGBSV ',
 | |
|      $                                 N, KL, KU, IMAT, K, RESULT( K )
 | |
|                                     NFAIL = NFAIL + 1
 | |
|                                  END IF
 | |
|    50                         CONTINUE
 | |
|                               NRUN = NRUN + NT
 | |
|                            END IF
 | |
| *
 | |
| *                          --- Test ZGBSVX ---
 | |
| *
 | |
|                            IF( .NOT.PREFAC )
 | |
|      $                        CALL ZLASET( 'Full', 2*KL+KU+1, N,
 | |
|      $                                     DCMPLX( ZERO ),
 | |
|      $                                     DCMPLX( ZERO ), AFB, LDAFB )
 | |
|                            CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
 | |
|      $                                  DCMPLX( ZERO ), X, LDB )
 | |
|                            IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
 | |
| *
 | |
| *                             Equilibrate the matrix if FACT = 'F' and
 | |
| *                             EQUED = 'R', 'C', or 'B'.
 | |
| *
 | |
|                               CALL ZLAQGB( N, N, KL, KU, A, LDA, S,
 | |
|      $                                     S( N+1 ), ROWCND, COLCND,
 | |
|      $                                     AMAX, EQUED )
 | |
|                            END IF
 | |
| *
 | |
| *                          Solve the system and compute the condition
 | |
| *                          number and error bounds using ZGBSVX.
 | |
| *
 | |
|                            SRNAMT = 'ZGBSVX'
 | |
|                            CALL ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
 | |
|      $                                  LDA, AFB, LDAFB, IWORK, EQUED,
 | |
|      $                                  S, S( LDB+1 ), B, LDB, X, LDB,
 | |
|      $                                  RCOND, RWORK, RWORK( NRHS+1 ),
 | |
|      $                                  WORK, RWORK( 2*NRHS+1 ), INFO )
 | |
| *
 | |
| *                          Check the error code from ZGBSVX.
 | |
| *
 | |
|                            IF( INFO.NE.IZERO )
 | |
|      $                        CALL ALAERH( PATH, 'ZGBSVX', INFO, IZERO,
 | |
|      $                                     FACT // TRANS, N, N, KL, KU,
 | |
|      $                                     NRHS, IMAT, NFAIL, NERRS,
 | |
|      $                                     NOUT )
 | |
| *
 | |
| *                          Compare RWORK(2*NRHS+1) from ZGBSVX with the
 | |
| *                          computed reciprocal pivot growth RPVGRW
 | |
| *
 | |
|                            IF( INFO.NE.0 ) THEN
 | |
|                               ANRMPV = ZERO
 | |
|                               DO 70 J = 1, INFO
 | |
|                                  DO 60 I = MAX( KU+2-J, 1 ),
 | |
|      $                                   MIN( N+KU+1-J, KL+KU+1 )
 | |
|                                     ANRMPV = MAX( ANRMPV,
 | |
|      $                                       ABS( A( I+( J-1 )*LDA ) ) )
 | |
|    60                            CONTINUE
 | |
|    70                         CONTINUE
 | |
|                               RPVGRW = ZLANTB( 'M', 'U', 'N', INFO,
 | |
|      $                                 MIN( INFO-1, KL+KU ),
 | |
|      $                                 AFB( MAX( 1, KL+KU+2-INFO ) ),
 | |
|      $                                 LDAFB, RDUM )
 | |
|                               IF( RPVGRW.EQ.ZERO ) THEN
 | |
|                                  RPVGRW = ONE
 | |
|                               ELSE
 | |
|                                  RPVGRW = ANRMPV / RPVGRW
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU,
 | |
|      $                                 AFB, LDAFB, RDUM )
 | |
|                               IF( RPVGRW.EQ.ZERO ) THEN
 | |
|                                  RPVGRW = ONE
 | |
|                               ELSE
 | |
|                                  RPVGRW = ZLANGB( 'M', N, KL, KU, A,
 | |
|      $                                    LDA, RDUM ) / RPVGRW
 | |
|                               END IF
 | |
|                            END IF
 | |
|                            RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) )
 | |
|      $                                    / MAX( RWORK( 2*NRHS+1 ),
 | |
|      $                                   RPVGRW ) / DLAMCH( 'E' )
 | |
| *
 | |
|                            IF( .NOT.PREFAC ) THEN
 | |
| *
 | |
| *                             Reconstruct matrix from factors and
 | |
| *                             compute residual.
 | |
| *
 | |
|                               CALL ZGBT01( N, N, KL, KU, A, LDA, AFB,
 | |
|      $                                     LDAFB, IWORK, WORK,
 | |
|      $                                     RESULT( 1 ) )
 | |
|                               K1 = 1
 | |
|                            ELSE
 | |
|                               K1 = 2
 | |
|                            END IF
 | |
| *
 | |
|                            IF( INFO.EQ.0 ) THEN
 | |
|                               TRFCON = .FALSE.
 | |
| *
 | |
| *                             Compute residual of the computed solution.
 | |
| *
 | |
|                               CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB,
 | |
|      $                                     WORK, LDB )
 | |
|                               CALL ZGBT02( TRANS, N, N, KL, KU, NRHS,
 | |
|      $                                     ASAV, LDA, X, LDB, WORK, LDB,
 | |
|      $                                     RESULT( 2 ) )
 | |
| *
 | |
| *                             Check solution from generated exact
 | |
| *                             solution.
 | |
| *
 | |
|                               IF( NOFACT .OR. ( PREFAC .AND.
 | |
|      $                            LSAME( EQUED, 'N' ) ) ) THEN
 | |
|                                  CALL ZGET04( N, NRHS, X, LDB, XACT,
 | |
|      $                                        LDB, RCONDC, RESULT( 3 ) )
 | |
|                               ELSE
 | |
|                                  IF( ITRAN.EQ.1 ) THEN
 | |
|                                     ROLDC = ROLDO
 | |
|                                  ELSE
 | |
|                                     ROLDC = ROLDI
 | |
|                                  END IF
 | |
|                                  CALL ZGET04( N, NRHS, X, LDB, XACT,
 | |
|      $                                        LDB, ROLDC, RESULT( 3 ) )
 | |
|                               END IF
 | |
| *
 | |
| *                             Check the error bounds from iterative
 | |
| *                             refinement.
 | |
| *
 | |
|                               CALL ZGBT05( TRANS, N, KL, KU, NRHS, ASAV,
 | |
|      $                                     LDA, BSAV, LDB, X, LDB, XACT,
 | |
|      $                                     LDB, RWORK, RWORK( NRHS+1 ),
 | |
|      $                                     RESULT( 4 ) )
 | |
|                            ELSE
 | |
|                               TRFCON = .TRUE.
 | |
|                            END IF
 | |
| *
 | |
| *                          Compare RCOND from ZGBSVX with the computed
 | |
| *                          value in RCONDC.
 | |
| *
 | |
|                            RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | |
| *
 | |
| *                          Print information about the tests that did
 | |
| *                          not pass the threshold.
 | |
| *
 | |
|                            IF( .NOT.TRFCON ) THEN
 | |
|                               DO 80 K = K1, NTESTS
 | |
|                                  IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                                 CALL ALADHD( NOUT, PATH )
 | |
|                                     IF( PREFAC ) THEN
 | |
|                                        WRITE( NOUT, FMT = 9995 )
 | |
|      $                                    'ZGBSVX', FACT, TRANS, N, KL,
 | |
|      $                                    KU, EQUED, IMAT, K,
 | |
|      $                                    RESULT( K )
 | |
|                                     ELSE
 | |
|                                        WRITE( NOUT, FMT = 9996 )
 | |
|      $                                    'ZGBSVX', FACT, TRANS, N, KL,
 | |
|      $                                    KU, IMAT, K, RESULT( K )
 | |
|                                     END IF
 | |
|                                     NFAIL = NFAIL + 1
 | |
|                                  END IF
 | |
|    80                         CONTINUE
 | |
|                               NRUN = NRUN + 7 - K1
 | |
|                            ELSE
 | |
|                               IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
 | |
|      $                            PREFAC ) THEN
 | |
|                                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                              CALL ALADHD( NOUT, PATH )
 | |
|                                  IF( PREFAC ) THEN
 | |
|                                     WRITE( NOUT, FMT = 9995 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, EQUED,
 | |
|      $                                 IMAT, 1, RESULT( 1 )
 | |
|                                  ELSE
 | |
|                                     WRITE( NOUT, FMT = 9996 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, IMAT, 1,
 | |
|      $                                 RESULT( 1 )
 | |
|                                  END IF
 | |
|                                  NFAIL = NFAIL + 1
 | |
|                                  NRUN = NRUN + 1
 | |
|                               END IF
 | |
|                               IF( RESULT( 6 ).GE.THRESH ) THEN
 | |
|                                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                              CALL ALADHD( NOUT, PATH )
 | |
|                                  IF( PREFAC ) THEN
 | |
|                                     WRITE( NOUT, FMT = 9995 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, EQUED,
 | |
|      $                                 IMAT, 6, RESULT( 6 )
 | |
|                                  ELSE
 | |
|                                     WRITE( NOUT, FMT = 9996 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, IMAT, 6,
 | |
|      $                                 RESULT( 6 )
 | |
|                                  END IF
 | |
|                                  NFAIL = NFAIL + 1
 | |
|                                  NRUN = NRUN + 1
 | |
|                               END IF
 | |
|                               IF( RESULT( 7 ).GE.THRESH ) THEN
 | |
|                                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                              CALL ALADHD( NOUT, PATH )
 | |
|                                  IF( PREFAC ) THEN
 | |
|                                     WRITE( NOUT, FMT = 9995 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, EQUED,
 | |
|      $                                 IMAT, 7, RESULT( 7 )
 | |
|                                  ELSE
 | |
|                                     WRITE( NOUT, FMT = 9996 )'ZGBSVX',
 | |
|      $                                 FACT, TRANS, N, KL, KU, IMAT, 7,
 | |
|      $                                 RESULT( 7 )
 | |
|                                  END IF
 | |
|                                  NFAIL = NFAIL + 1
 | |
|                                  NRUN = NRUN + 1
 | |
|                               END IF
 | |
|                            END IF
 | |
| 
 | |
| *                    --- Test ZGBSVXX ---
 | |
| 
 | |
| *                    Restore the matrices A and B.
 | |
| 
 | |
| c                     write(*,*) 'begin zgbsvxx testing'
 | |
| 
 | |
|                      CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA, A,
 | |
|      $                          LDA )
 | |
|                      CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB, B, LDB )
 | |
| 
 | |
|                      IF( .NOT.PREFAC )
 | |
|      $                  CALL ZLASET( 'Full', 2*KL+KU+1, N,
 | |
|      $                               DCMPLX( ZERO ), DCMPLX( ZERO ),
 | |
|      $                               AFB, LDAFB )
 | |
|                      CALL ZLASET( 'Full', N, NRHS,
 | |
|      $                            DCMPLX( ZERO ), DCMPLX( ZERO ),
 | |
|      $                            X, LDB )
 | |
|                      IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
 | |
| *
 | |
| *                       Equilibrate the matrix if FACT = 'F' and
 | |
| *                       EQUED = 'R', 'C', or 'B'.
 | |
| *
 | |
|                         CALL ZLAQGB( N, N, KL, KU, A, LDA, S,
 | |
|      $                       S( N+1 ), ROWCND, COLCND, AMAX, EQUED )
 | |
|                      END IF
 | |
| *
 | |
| *                    Solve the system and compute the condition number
 | |
| *                    and error bounds using ZGBSVXX.
 | |
| *
 | |
|                      SRNAMT = 'ZGBSVXX'
 | |
|                      N_ERR_BNDS = 3
 | |
|                      CALL ZGBSVXX( FACT, TRANS, N, KL, KU, NRHS, A, LDA,
 | |
|      $                    AFB, LDAFB, IWORK, EQUED, S, S( N+1 ), B, LDB,
 | |
|      $                    X, LDB, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
 | |
|      $                    ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
 | |
|      $                    RWORK, INFO )
 | |
| *
 | |
| *                    Check the error code from ZGBSVXX.
 | |
| *
 | |
|                      IF( INFO.EQ.N+1 ) GOTO 90
 | |
|                      IF( INFO.NE.IZERO ) THEN
 | |
|                         CALL ALAERH( PATH, 'ZGBSVXX', INFO, IZERO,
 | |
|      $                               FACT // TRANS, N, N, -1, -1, NRHS,
 | |
|      $                               IMAT, NFAIL, NERRS, NOUT )
 | |
|                         GOTO 90
 | |
|                      END IF
 | |
| *
 | |
| *                    Compare rpvgrw_svxx from ZGESVXX with the computed
 | |
| *                    reciprocal pivot growth factor RPVGRW
 | |
| *
 | |
| 
 | |
|                      IF ( INFO .GT. 0 .AND. INFO .LT. N+1 ) THEN
 | |
|                         RPVGRW = ZLA_GBRPVGRW(N, KL, KU, INFO, A, LDA,
 | |
|      $                       AFB, LDAFB)
 | |
|                      ELSE
 | |
|                         RPVGRW = ZLA_GBRPVGRW(N, KL, KU, N, A, LDA,
 | |
|      $                       AFB, LDAFB)
 | |
|                      ENDIF
 | |
| 
 | |
|                      RESULT( 7 ) = ABS( RPVGRW-rpvgrw_svxx ) /
 | |
|      $                             MAX( rpvgrw_svxx, RPVGRW ) /
 | |
|      $                             DLAMCH( 'E' )
 | |
| *
 | |
|                      IF( .NOT.PREFAC ) THEN
 | |
| *
 | |
| *                       Reconstruct matrix from factors and compute
 | |
| *                       residual.
 | |
| *
 | |
|                         CALL ZGBT01( N, N, KL, KU, A, LDA, AFB, LDAFB,
 | |
|      $                       IWORK, WORK( 2*NRHS+1 ), RESULT( 1 ) )
 | |
|                         K1 = 1
 | |
|                      ELSE
 | |
|                         K1 = 2
 | |
|                      END IF
 | |
| *
 | |
|                      IF( INFO.EQ.0 ) THEN
 | |
|                         TRFCON = .FALSE.
 | |
| *
 | |
| *                       Compute residual of the computed solution.
 | |
| *
 | |
|                         CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB, WORK,
 | |
|      $                               LDB )
 | |
|                         CALL ZGBT02( TRANS, N, N, KL, KU, NRHS, ASAV,
 | |
|      $                       LDA, X, LDB, WORK, LDB, RESULT( 2 ) )
 | |
| *
 | |
| *                       Check solution from generated exact solution.
 | |
| *
 | |
|                         IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
 | |
|      $                      'N' ) ) ) THEN
 | |
|                            CALL ZGET04( N, NRHS, X, LDB, XACT, LDB,
 | |
|      $                                  RCONDC, RESULT( 3 ) )
 | |
|                         ELSE
 | |
|                            IF( ITRAN.EQ.1 ) THEN
 | |
|                               ROLDC = ROLDO
 | |
|                            ELSE
 | |
|                               ROLDC = ROLDI
 | |
|                            END IF
 | |
|                            CALL ZGET04( N, NRHS, X, LDB, XACT, LDB,
 | |
|      $                                  ROLDC, RESULT( 3 ) )
 | |
|                         END IF
 | |
|                      ELSE
 | |
|                         TRFCON = .TRUE.
 | |
|                      END IF
 | |
| *
 | |
| *                    Compare RCOND from ZGBSVXX with the computed value
 | |
| *                    in RCONDC.
 | |
| *
 | |
|                      RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | |
| *
 | |
| *                    Print information about the tests that did not pass
 | |
| *                    the threshold.
 | |
| *
 | |
|                      IF( .NOT.TRFCON ) THEN
 | |
|                         DO 45 K = K1, NTESTS
 | |
|                            IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                           CALL ALADHD( NOUT, PATH )
 | |
|                               IF( PREFAC ) THEN
 | |
|                                  WRITE( NOUT, FMT = 9995 )'ZGBSVXX',
 | |
|      $                                FACT, TRANS, N, KL, KU, EQUED,
 | |
|      $                                IMAT, K, RESULT( K )
 | |
|                               ELSE
 | |
|                                  WRITE( NOUT, FMT = 9996 )'ZGBSVXX',
 | |
|      $                                FACT, TRANS, N, KL, KU, IMAT, K,
 | |
|      $                                RESULT( K )
 | |
|                               END IF
 | |
|                               NFAIL = NFAIL + 1
 | |
|                            END IF
 | |
|  45                     CONTINUE
 | |
|                         NRUN = NRUN + 7 - K1
 | |
|                      ELSE
 | |
|                         IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
 | |
|      $                       THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALADHD( NOUT, PATH )
 | |
|                            IF( PREFAC ) THEN
 | |
|                               WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, EQUED, IMAT, 1,
 | |
|      $                             RESULT( 1 )
 | |
|                            ELSE
 | |
|                               WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, IMAT, 1,
 | |
|      $                             RESULT( 1 )
 | |
|                            END IF
 | |
|                            NFAIL = NFAIL + 1
 | |
|                            NRUN = NRUN + 1
 | |
|                         END IF
 | |
|                         IF( RESULT( 6 ).GE.THRESH ) THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALADHD( NOUT, PATH )
 | |
|                            IF( PREFAC ) THEN
 | |
|                               WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, EQUED, IMAT, 6,
 | |
|      $                             RESULT( 6 )
 | |
|                            ELSE
 | |
|                               WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, IMAT, 6,
 | |
|      $                             RESULT( 6 )
 | |
|                            END IF
 | |
|                            NFAIL = NFAIL + 1
 | |
|                            NRUN = NRUN + 1
 | |
|                         END IF
 | |
|                         IF( RESULT( 7 ).GE.THRESH ) THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALADHD( NOUT, PATH )
 | |
|                            IF( PREFAC ) THEN
 | |
|                               WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, EQUED, IMAT, 7,
 | |
|      $                             RESULT( 7 )
 | |
|                            ELSE
 | |
|                               WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
 | |
|      $                             TRANS, N, KL, KU, IMAT, 7,
 | |
|      $                             RESULT( 7 )
 | |
|                            END IF
 | |
|                            NFAIL = NFAIL + 1
 | |
|                            NRUN = NRUN + 1
 | |
|                         END IF
 | |
| *
 | |
|                      END IF
 | |
| *
 | |
|    90                   CONTINUE
 | |
|   100                CONTINUE
 | |
|   110             CONTINUE
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
|   150 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
| 
 | |
| *     Test Error Bounds from ZGBSVXX
 | |
| 
 | |
|       CALL ZEBCHVXX(THRESH, PATH)
 | |
| 
 | |
|  9999 FORMAT( ' *** In ZDRVGB, LA=', I5, ' is too small for N=', I5,
 | |
|      $      ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
 | |
|      $      I5 )
 | |
|  9998 FORMAT( ' *** In ZDRVGB, LAFB=', I5, ' is too small for N=', I5,
 | |
|      $      ', KU=', I5, ', KL=', I5, /
 | |
|      $      ' ==> Increase LAFB to at least ', I5 )
 | |
|  9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
 | |
|      $      I1, ', test(', I1, ')=', G12.5 )
 | |
|  9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
 | |
|      $      I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
 | |
|  9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
 | |
|      $      I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
 | |
|      $      ')=', G12.5 )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZDRVGB
 | |
| *
 | |
|       END
 |