224 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSYT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
 | |
| *                          RWORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDA, LDAFAC, LDC, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
 | |
| *      $                   RWORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSYT01 reconstructs a symmetric indefinite matrix A from its
 | |
| *> block L*D*L' or U*D*U' factorization and computes the residual
 | |
| *>    norm( C - A ) / ( N * norm(A) * EPS ),
 | |
| *> where C is the reconstructed matrix and EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The original symmetric matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is REAL array, dimension (LDAFAC,N)
 | |
| *>          The factored form of the matrix A.  AFAC contains the block
 | |
| *>          diagonal matrix D and the multipliers used to obtain the
 | |
| *>          factor L or U from the block L*D*L' or U*D*U' factorization
 | |
| *>          as computed by SSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from SSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.  LDC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2013
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
 | |
|      $                   RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.5.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2013
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDA, LDAFAC, LDC, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
 | |
|      $                   RWORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J
 | |
|       REAL               ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANSY
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLASET, SLAVSY
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Initialize C to the identity matrix.
 | |
| *
 | |
|       CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
 | |
| *
 | |
| *     Call SLAVSY to form the product D * U' (or D * L' ).
 | |
| *
 | |
|       CALL SLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC,
 | |
|      $             IPIV, C, LDC, INFO )
 | |
| *
 | |
| *     Call SLAVSY again to multiply by U (or L ).
 | |
| *
 | |
|       CALL SLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
 | |
|      $             IPIV, C, LDC, INFO )
 | |
| *
 | |
| *     Compute the difference  C - A .
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = 1, J
 | |
|                C( I, J ) = C( I, J ) - A( I, J )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
|          DO 40 J = 1, N
 | |
|             DO 30 I = J, N
 | |
|                C( I, J ) = C( I, J ) - A( I, J )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm( C - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYT01
 | |
| *
 | |
|       END
 |