283 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SRQT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
 | |
| *                          RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            K, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
 | |
| *      $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | |
| *      $                   WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SRQT03 tests SORMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.
 | |
| *>
 | |
| *> SRQT03 compares the results of a call to SORMRQ with the results of
 | |
| *> forming Q explicitly by a call to SORGRQ and then performing matrix
 | |
| *> multiplication by a call to SGEMM.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows or columns of the matrix C; C is n-by-m if
 | |
| *>          Q is applied from the left, or m-by-n if Q is applied from
 | |
| *>          the right.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the orthogonal matrix Q.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines the
 | |
| *>          orthogonal matrix Q.  N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDA,N)
 | |
| *>          Details of the RQ factorization of an m-by-n matrix, as
 | |
| *>          returned by SGERQF. See SGERQF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDA,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CC
 | |
| *> \verbatim
 | |
| *>          CC is REAL array, dimension (LDA,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDA,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays AF, C, CC, and Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors corresponding
 | |
| *>          to the RQ factorization in AF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of WORK.  LWORK must be at least M, and should be
 | |
| *>          M*NB, where NB is the blocksize for this environment.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (4)
 | |
| *>          The test ratios compare two techniques for multiplying a
 | |
| *>          random matrix C by an n-by-n orthogonal matrix Q.
 | |
| *>          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
 | |
| *>          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
 | |
| *>          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
 | |
| *>          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
 | |
|      $                   RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            K, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
 | |
|      $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | |
|      $                   WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
|       REAL               ROGUE
 | |
|       PARAMETER          ( ROGUE = -1.0E+10 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          SIDE, TRANS
 | |
|       INTEGER            INFO, ISIDE, ITRANS, J, MC, MINMN, NC
 | |
|       REAL               CNORM, EPS, RESID
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SLACPY, SLARNV, SLASET, SORGRQ, SORMRQ
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 )
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       CHARACTER*32       SRNAMT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEED / 1988, 1989, 1990, 1991 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       MINMN = MIN( M, N )
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MINMN.EQ.0 ) THEN
 | |
|          RESULT( 1 ) = ZERO
 | |
|          RESULT( 2 ) = ZERO
 | |
|          RESULT( 3 ) = ZERO
 | |
|          RESULT( 4 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Copy the last k rows of the factorization to the array Q
 | |
| *
 | |
|       CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
 | |
|       IF( K.GT.0 .AND. N.GT.K )
 | |
|      $   CALL SLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
 | |
|      $                Q( N-K+1, 1 ), LDA )
 | |
|       IF( K.GT.1 )
 | |
|      $   CALL SLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
 | |
|      $                Q( N-K+2, N-K+1 ), LDA )
 | |
| *
 | |
| *     Generate the n-by-n matrix Q
 | |
| *
 | |
|       SRNAMT = 'SORGRQ'
 | |
|       CALL SORGRQ( N, N, K, Q, LDA, TAU( MINMN-K+1 ), WORK, LWORK,
 | |
|      $             INFO )
 | |
| *
 | |
|       DO 30 ISIDE = 1, 2
 | |
|          IF( ISIDE.EQ.1 ) THEN
 | |
|             SIDE = 'L'
 | |
|             MC = N
 | |
|             NC = M
 | |
|          ELSE
 | |
|             SIDE = 'R'
 | |
|             MC = M
 | |
|             NC = N
 | |
|          END IF
 | |
| *
 | |
| *        Generate MC by NC matrix C
 | |
| *
 | |
|          DO 10 J = 1, NC
 | |
|             CALL SLARNV( 2, ISEED, MC, C( 1, J ) )
 | |
|    10    CONTINUE
 | |
|          CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK )
 | |
|          IF( CNORM.EQ.0.0 )
 | |
|      $      CNORM = ONE
 | |
| *
 | |
|          DO 20 ITRANS = 1, 2
 | |
|             IF( ITRANS.EQ.1 ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'T'
 | |
|             END IF
 | |
| *
 | |
| *           Copy C
 | |
| *
 | |
|             CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
 | |
| *
 | |
| *           Apply Q or Q' to C
 | |
| *
 | |
|             SRNAMT = 'SORMRQ'
 | |
|             IF( K.GT.0 )
 | |
|      $         CALL SORMRQ( SIDE, TRANS, MC, NC, K, AF( M-K+1, 1 ), LDA,
 | |
|      $                      TAU( MINMN-K+1 ), CC, LDA, WORK, LWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *           Form explicit product and subtract
 | |
| *
 | |
|             IF( LSAME( SIDE, 'L' ) ) THEN
 | |
|                CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
 | |
|      $                     LDA, C, LDA, ONE, CC, LDA )
 | |
|             ELSE
 | |
|                CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
 | |
|      $                     LDA, Q, LDA, ONE, CC, LDA )
 | |
|             END IF
 | |
| *
 | |
| *           Compute error in the difference
 | |
| *
 | |
|             RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK )
 | |
|             RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
 | |
|      $         ( REAL( MAX( 1, N ) )*CNORM*EPS )
 | |
| *
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SRQT03
 | |
| *
 | |
|       END
 |