222 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SPOT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
 | |
| *                          RWORK, RCOND, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDA, LDAINV, LDWORK, N
 | |
| *       REAL               RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SPOT03 computes the residual for a symmetric matrix times its
 | |
| *> inverse:
 | |
| *>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The original symmetric matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AINV
 | |
| *> \verbatim
 | |
| *>          AINV is REAL array, dimension (LDAINV,N)
 | |
| *>          On entry, the inverse of the matrix A, stored as a symmetric
 | |
| *>          matrix in the same format as A.
 | |
| *>          In this version, AINV is expanded into a full matrix and
 | |
| *>          multiplied by A, so the opposing triangle of AINV will be
 | |
| *>          changed; i.e., if the upper triangular part of AINV is
 | |
| *>          stored, the lower triangular part will be used as work space.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAINV
 | |
| *> \verbatim
 | |
| *>          LDAINV is INTEGER
 | |
| *>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LDWORK,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          The reciprocal of the condition number of A, computed as
 | |
| *>          ( 1/norm(A) ) / norm(AINV).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
 | |
|      $                   RWORK, RCOND, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDA, LDAINV, LDWORK, N
 | |
|       REAL               RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       REAL               AINVNM, ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANGE, SLANSY
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANGE, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SSYMM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
 | |
|       AINVNM = SLANSY( '1', UPLO, N, AINV, LDAINV, RWORK )
 | |
|       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|          RCOND = ZERO
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
|       RCOND = ( ONE / ANORM ) / AINVNM
 | |
| *
 | |
| *     Expand AINV into a full matrix and call SSYMM to multiply
 | |
| *     AINV on the left by A.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = 1, J - 1
 | |
|                AINV( J, I ) = AINV( I, J )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
|          DO 40 J = 1, N
 | |
|             DO 30 I = J + 1, N
 | |
|                AINV( J, I ) = AINV( I, J )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
|       CALL SSYMM( 'Left', UPLO, N, N, -ONE, A, LDA, AINV, LDAINV, ZERO,
 | |
|      $            WORK, LDWORK )
 | |
| *
 | |
| *     Add the identity matrix to WORK .
 | |
| *
 | |
|       DO 50 I = 1, N
 | |
|          WORK( I, I ) = WORK( I, I ) + ONE
 | |
|    50 CONTINUE
 | |
| *
 | |
| *     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
 | |
| *
 | |
|       RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SPOT03
 | |
| *
 | |
|       END
 |