261 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGTT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
 | |
| *                          LDWORK, RWORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDWORK, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
 | |
| *      $                   DU2( * ), DUF( * ), RWORK( * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGTT01 reconstructs a tridiagonal matrix A from its LU factorization
 | |
| *> and computes the residual
 | |
| *>    norm(L*U - A) / ( norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGTER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DL
 | |
| *> \verbatim
 | |
| *>          DL is REAL array, dimension (N-1)
 | |
| *>          The (n-1) sub-diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU
 | |
| *> \verbatim
 | |
| *>          DU is REAL array, dimension (N-1)
 | |
| *>          The (n-1) super-diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DLF
 | |
| *> \verbatim
 | |
| *>          DLF is REAL array, dimension (N-1)
 | |
| *>          The (n-1) multipliers that define the matrix L from the
 | |
| *>          LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DF
 | |
| *> \verbatim
 | |
| *>          DF is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the upper triangular matrix U from
 | |
| *>          the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DUF
 | |
| *> \verbatim
 | |
| *>          DUF is REAL array, dimension (N-1)
 | |
| *>          The (n-1) elements of the first super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU2
 | |
| *> \verbatim
 | |
| *>          DU2 is REAL array, dimension (N-2)
 | |
| *>          The (n-2) elements of the second super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | |
| *>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | |
| *>          required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LDWORK,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
 | |
|      $                   LDWORK, RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDWORK, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
 | |
|      $                   DU2( * ), DUF( * ), RWORK( * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IP, J, LASTJ
 | |
|       REAL               ANORM, EPS, LI
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGT, SLANHS
 | |
|       EXTERNAL           SLAMCH, SLANGT, SLANHS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SSWAP
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Copy the matrix U to WORK.
 | |
| *
 | |
|       DO 20 J = 1, N
 | |
|          DO 10 I = 1, N
 | |
|             WORK( I, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
|       DO 30 I = 1, N
 | |
|          IF( I.EQ.1 ) THEN
 | |
|             WORK( I, I ) = DF( I )
 | |
|             IF( N.GE.2 )
 | |
|      $         WORK( I, I+1 ) = DUF( I )
 | |
|             IF( N.GE.3 )
 | |
|      $         WORK( I, I+2 ) = DU2( I )
 | |
|          ELSE IF( I.EQ.N ) THEN
 | |
|             WORK( I, I ) = DF( I )
 | |
|          ELSE
 | |
|             WORK( I, I ) = DF( I )
 | |
|             WORK( I, I+1 ) = DUF( I )
 | |
|             IF( I.LT.N-1 )
 | |
|      $         WORK( I, I+2 ) = DU2( I )
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Multiply on the left by L.
 | |
| *
 | |
|       LASTJ = N
 | |
|       DO 40 I = N - 1, 1, -1
 | |
|          LI = DLF( I )
 | |
|          CALL SAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
 | |
|      $               WORK( I+1, I ), LDWORK )
 | |
|          IP = IPIV( I )
 | |
|          IF( IP.EQ.I ) THEN
 | |
|             LASTJ = MIN( I+2, N )
 | |
|          ELSE
 | |
|             CALL SSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
 | |
|      $                  LDWORK )
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Subtract the matrix A.
 | |
| *
 | |
|       WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
 | |
|       IF( N.GT.1 ) THEN
 | |
|          WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
 | |
|          WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
 | |
|          WORK( N, N ) = WORK( N, N ) - D( N )
 | |
|          DO 50 I = 2, N - 1
 | |
|             WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
 | |
|             WORK( I, I ) = WORK( I, I ) - D( I )
 | |
|             WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
 | |
|    50    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the 1-norm of the tridiagonal matrix A.
 | |
| *
 | |
|       ANORM = SLANGT( '1', N, DL, D, DU )
 | |
| *
 | |
| *     Compute the 1-norm of WORK, which is only guaranteed to be
 | |
| *     upper Hessenberg.
 | |
| *
 | |
|       RESID = SLANHS( '1', N, WORK, LDWORK, RWORK )
 | |
| *
 | |
| *     Compute norm(L*U - A) / (norm(A) * EPS)
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( RESID / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGTT01
 | |
| *
 | |
|       END
 |